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Abstract

A Non–Linear Eddy Viscosity/Diffusivity Model for turbulent flows is presented,
featuring quadratic constitutive relationships for both Reynolds stresses and scalar
fluxes. Model coefficients are defined by enforcing compliance with fundamental ex-
perimental evidence, and realisability of both the velocity and scalar fields, which is
achieved by making coefficients depend upon an appropriately defined strain param-
eter. The model is also shown to satisfy joint–realisability. The model is extensively
tested against experimental results for confined swirling flows, encompassing a wide
range of values of the swirl number, momentum and density ratios. The results un-
ambiguously indicate a remarkable, uniform improvement over standard modelling.
Further, previous work on the subject of nonlinear models is reviewed.
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1 Introduction

Non–Linear Eddy Viscosity Models (NLEVMs) appear as potential candidates to
replace the well–tried k–ǫ model [20, 21] (with minor re–optimisation of the model
constants as in [25]) as a ‘workhorse’ for the computation of turbulent flows. The
k–ǫ and other linear eddy viscosity models are known to exhibit fundamental short-
comings, particularly in their inability to reproduce flows featuring recirculation
and/or swirl, streamline curvature and secondary flows in non–circular ducts. Sim-
ilar deficiencies are evident in flows involving scalar transport related in particular
to the largely underestimated ratio of stream wise to transverse turbulent fluxes in
heated/cooled channel or pipe flows and scalar fluctuations in buoyant flows that are
also poorly reproduced. To correct this behaviour, non–linear models, here termed
Non–Linear Eddy Diffusivity Models (NLEDMs), have been proposed. However,
finding a suitable replacement for the standard k–ǫ model appears to be a major
challenge; despite the above mentioned weaknesses, it nonetheless features unde-
niable virtues. These are related to its relative ease of use and robustness and to
the fact that it is well-calibrated, so that it leads to acceptable results in many
cases. This is in spite of the fact that while a term–by–term analysis of the model
undoubtedly reveals inadequacies, the resulting negative impact on the quality of
predictions is limited, due to compensating errors. A plethora of NLEVMs and (to
a smaller extent) NLEDMs have been proposed in recent years. Such a proliferation
is clearly a consequence of the large number of undetermined coefficients appearing
in the non–linear expansions of Reynolds stresses and scalar fluxes, which can be
specified according to different criteria. A categorisation of these models can be
attempted, based on the following criteria:

(a) possible inclusion of higher–order derivatives.

(b) choice of variables to identify turbulent velocity and length scales.

(c) order of the polynomial expansion.

(d) relationship to second–moment models.

As far as item (a) is concerned, it can be observed that by far the vast majority
of non–linear models adopt forms which only feature the first derivatives of the mean
velocity components and of the mean scalar. However, a small number of NLEVMs,
[63, 19] start from a form including the second–derivatives of the mean velocity
components. The latter choice, although supposedly involving some advantage raises
the order of the resulting RANS equations above that of the original Navier-Stokes
equation with the consequence that boundary conditions are required for the mean
velocity components and their spatial gradients.

Item (b) also features two options, with one being overwhelmingly more popular
than the other. In fact, whereas practically all models choose the square root of
the turbulent kinetic energy

√
k as a turbulent velocity scale, either the mechanical

dissipation rate ǫ or a (pseudo)–vorticity ω can be used to construct a turbulent time
scale, with the latter approach representing an extension of the (linear) k–ω model
[51, 74]. The vast majority of non–linear models adopt ǫ as the second variable,
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whilst a few prefer ω [74, 1, 35, 60]. One–equation NLEVMs, involving only an
equation for k, have also been proposed [61, 62].

The nearly unanimous consensus above is not replicated for the two remaining
items. In particular, as far as item (c) is concerned, NLEVMs have been proposed
adopting quadratic [63, 12, 53, 54, 61, 32, 13, 49, 44, 73, 11, 3], cubic [8, 56, 28, 69,
1, 35, 39, 60], or even quartic (though incomplete) [7, 69] constitutive relationships
for the Reynolds stress. In contrast practically all the proposed NLEDMs [26, 17,
2, 23, 41, 47, 48, 3, 38, 67] belong to the quadratic family.

Lastly, item (d) refers to the methodology adopted in formulating NLEVMs and
NLEDMs. While some authors simply postulate a non–linear expression for turbu-
lent stresses and/or fluxes, and determine the coefficients by imposing appropriate
conditions, others recover a non–linear expression by simplifying second–moment
closure models. In particular, Algebraic Stress Models (ASMs) assume that the
anisotropy tensor is conserved along a streamline (though a different condition has
also been proposed [50] to account for curvature effects), and that the rate of change
and diffusion of the anisotropy is linearly related to the rate of change and diffusion
of the turbulence kinetic energy. This approach, initiated by Rodi [45, 46], leads
to implicit forms for the Reynolds stresses. The resulting expressions are rather
complex, and cannot be strictly classified as NLEVMs; furthermore ASMs are often
reported to give convergence problems in numerical solutions. Gatski and Speziale
[12, 64] and Girimaji [14, 15], by adopting a non–linear form in an appropriate ten-
sor basis, recover an explicit non–linear expression, termed an Explicit Algebraic
Stress Model (EASM), see also [40, 13, 23, 11, 70]. On the basis of their close
relationship to second–moment closures the authors claim these to be more pow-
erful than ordinary NLEVMs. However, it has to be said that a full tensor basis
requires five terms; when fewer terms are used, as is usually the case, the resulting
model amounts rather to a least–square fit. Furthermore singular expressions can
result in same situations, thereby requiring a ‘regularization’ of the expressions for
the stresses [12, 13], which then depart from those of the parent second–moment
model. Other realisability constraints related to EASMs are discussed by Durbin
and Petterson–Reif [10] and Weis et al. [72].

A similar distinction can be drawn for scalar transport between those in which a
non–linear expression for the scalar fluxes is simply postulated and those in which
a similar form is obtained as a result of simplifications to second–moment closures
for the scalar fluxes. Such simplifications lead to implicit algebraic expression for
the latter; again, by adopting an appropriate basis, the model can be expressed in
explicit form, sometimes termed an Explicit Algebraic Heat flux Model (EAHM),
[71, 42]. The full basis in this case requires ten terms and the development of such
a full model has not yet been attempted. Thus current models can be considered as
least–square fits to full EAHMs. As for the Reynold stresses singularities can arise
for the scalar fluxes and ‘regularization’ is then required. An alternative widely used
expression for the scalar fluxes is the Generalised Gradient Diffusion Hypothesis
(GGDH), stemming from application of a higher–order model [9] to heat fluxes
[26], which also conserves some relation to second–moment models. It has been
used extensively [17, 2, 47, 67]; a higher–order version (HOGGDH) has also been
proposed [38].
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The near–wall behaviour of non–linear models have been addressed by a number
of authors [23, 35, 44, 50, 3, 42]. Non–linear models have also been extended to deal
with high–speed flows [39], two–phase flows [33, 34, 75], buoyant flows [73, 59], flu-
ids exhibiting very small (such as liquid metals) or large (liquids) Prandtl numbers,
[2, 71], or even viscoelastic behaviour, [36, 37]. This serves to emphasise the practical
importance currently attached to non–linear constitutive equations. A critical point
in the derivation of non–linear models is the determination of the model coefficients.
Compliance with experiments, realisability, and criteria borrowed from thermody-
namics have been used. Incidentally, the circumstance that the modelled equations
can switch their nature from parabolic to hyperbolic due to an inappropriate choice
of the model coefficients was recognised by Weigand et al. [71].

In the present work non-linear constitutive equations, involving quadratic forms,
are devised to allow both the Reynolds stresses and scalar fluxes to be determined.
A quadratic form is selected in order to depart relatively little from the well–tried
standard k–ǫ model and also because, in previous work, the effect of higher–order
terms proved to be relatively small [1]. As in all similar approaches the present
formulation involves a significant number of undetermined parameters. However, it
is shown that the imposition of realisability constraints - positivity of the normal
stresses and satisfaction of Schwarz’s inequality by the shear stresses and compliance
with extremum principles for scalar quantities - results in a substantial reduction
in the number of free parameters. The remaining free constants and parameters
are then determined by recourse to measurements in simple canonical shear flows.
The enforcement of realisability constraints on the Reynolds stresses is achieved
mainly through consideration of thin shear flows and mixing layers and, while real-
isable results are not guaranteed under all general strain conditions, this is clearly a
prerequisite to ensuring realisability in more complex flows. None of the currently
available Non-Linear Eddy Diffusivity Models (NLEDM) appear to take account of
extremum principles, a consequence of which is that the maximum and minimum
values of a strictly conserved scalar quantity arising in any steady solution must
lie on the boundaries of the solution domain. Satisfaction of this constraint is of
paramount importance in many practical applications and a failure to do so can
have catastrophic consequences in computations; species mass fractions less than
zero and greater than unity can arise and, for heat transfer problems, temperature
profiles may violate the second law. In the present paper a condition on the model
coefficients is explicitly enforced to ensure compliance with extremum principles.
The resulting complete model, termed a Non-Linear Eddy Viscosity and Diffusivity
Model (NLEVDM), is also shown to satisfy joint–realisability.

Section 2 presents the proposed form of the constitutive relationship for the
Reynolds stresses, and discuss the criteria adopted to identify the NLEVM coeffi-
cients. These are defined as a function of an appropriate strain parameter, with
the aim of preventing the occurrence of unphysical situations. Similarly, Section 3
presents the form of the constitutive relationships for scalar fluxes, and discusses the
criteria adopted to identify the NLEDM coefficients, which are also prescribed as a
function of the previously defined strain parameter, again in order to ensure phys-
ically realizable solutions. The performance of the proposed models is investigated
in Section 4. The accurate prediction of flows in combustion chamber and furnaces,
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in which swirl is routinely adopted, and more generally in devices involving heat
and/or mass transfer, calls for improved modelling of both Reynolds stresses and
scalar fluxes. Accordingly, the models are applied to a range of confined swirling
flows, covering a range of swirl numbers and momentum and density ratios; both
inert and reacting flows are considered. In the test cases considered the details of the
flow in the vicinity of the walls do not play a significant role - attention is focused
on measurements taken well inside the flow. Accordingly, a wall–function approach
is adopted in order to save computer time. The results of the computations are
compared extensively with measurements of mean velocity and the components of
the Reynolds stress and scalar fluxes, thereby enabling an accurately evaluation of
the performance of the models. Finally, conclusions are drawn in Section 5.

2 Non–Linear Eddy Viscosity Model (NLEVM)

In formulating constitutive relationships for stress it is conventional to separate
the velocity gradient ∂ui/∂xj into a symmetric part - the rate of deformation,
Sij = 1

2
(∂ui/∂xj + ∂uj/∂xi) – and antisymmetric part – the rotation tensor, Ωij =

1

2
(∂ui/∂xj − ∂uj/∂xi). The reasoning behind this separation is that the stress in a

fluid continuum is independent of fluid rotation and the stress then depends only on
the rate of deformation; a solid body rotation of a fluid element does not induce a
stress. However the Reynolds stresses originate from the convection terms and as a
consequence they are not invariant under rotation. Under these circumstances the
separation of the velocity gradient into rate of deformation and rotation appears
to offer little advantage and is therefore not adopted. To formulate a constitutive
equation we first write:

ũ′′

i u
′′

j = ũ′′

i u
′′

j

(
k, ǫ,

∂ui

∂xj

)
(1)

where nothing has been omitted from the argument of equation (1). The Cayley–
Hamilton theorem, [31] can now be used to write the following most general expres-

sion for ũ′′

i u
′′

j :

ũ′′

i u
′′

j = aδij + b

(
∂ũi

∂xj

+
∂ũj

∂xi

)
+ c

(
∂ũi

∂xk

∂ũk

∂xj

+
∂ũj

∂xk

∂ũk

∂xi

)

+d
∂ũi

∂xk

∂ũj

∂xk

+ e
∂ũk

∂xi

∂ũk

∂xj

(2)

where a, b, c, d, e are functions of k, ǫ and the first, second and third invariants of
∂ui/∂xj .

Equation (2) is used as a basis for constructing a constitutive relationship for
the Reynolds stresses, hopefully more powerful than standard eddy viscosity models.
The result is a Non-Linear Eddy Viscosity Model (NLEVM). If account is taken of

dimensional homogeneity, symmetry and the fact that ũ′′

i u
′′

i = 2k then the following
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expression can be constructed [52, 55]:

ũ′′

i u
′′

j =
1

3

[
2 k − 2 α1

k2

ǫ

∂ũk

∂xk
− 2 α2

k3

ǫ2

∂ũl

∂xk

∂ũk

∂xl
− (α3 + α4)

k3

ǫ2

∂ũl

∂xk

∂ũl

∂xk

]
δij +

+ α1

k2

ǫ

(
∂ũi

∂xj
+

∂ũj

∂xi

)
+ α2

k3

ǫ2

(
∂ũi

∂xk

∂ũk

∂xj
+

∂ũj

∂xk

∂ũk

∂xi

)
+

+ α3

k3

ǫ2

∂ũi

∂xk

∂ũj

∂xk
+ α4

k3

ǫ2

∂ũk

∂xi

∂ũk

∂xj
(3)

where the α′s are functions of the invariants. The quantity contained within [ ] on
the rhs of equation (3) is chosen to ensure that both sides of the equation contract
to 2k.

The isotropic contribution to the stress in equation (3) can be adsorbed into the
definition of pressure so that when substituted into the momentum equation the
result is:

∂ ρ ũi

∂t
+

∂ ρ ũl ũi

∂xl
= − ∂p∗

∂xi
+

∂

∂xl

[
µ

(
∂ũi

∂xl
+

∂ul

∂xi

)]
−

− ∂

∂xl

ρ

[
α1

k2

ǫ

(
∂ũi

∂xl

+
∂ũl

∂xi

)
+ α2

k3

ǫ2

(
∂ũi

∂xk

∂ũk

∂xl

+
∂ũl

∂xk

∂ũk

∂xi

)
+

+ α3

k3

ǫ2

∂ũi

∂xk

∂ũl

∂xk

+ α4

k3

ǫ2

∂ũk

∂xi

∂ũk

∂xl

]
+ ρ gi

(4)

where p∗ is the pseudo–pressure.
The values of k and ǫ are obtained from the standard form of the k − ǫ model

with the constant values Cǫ1 = 1.44; Cǫ2 = 1.92; σk = 1.0 and σǫ = 1.3. The only
modification required is to the turbulence energy production rate:

P = − ũ′′

mu′′

n

∂ũm

∂xn

(5)

which is evaluated using Eq. (3) so that:

P = − 1

3

[
2 k̃ − 2 α1

k̃2

ǫ̃

∂ũk

∂xk
− 2 α2

k̃3

ǫ̃2

∂ũl

∂xk

∂ũk

∂xl
− (α3 + α4)

k̃3

ǫ̃2

∂ũl

∂xk

∂ũl

∂xk

]
∂ũm

∂xm
−

−
[

α1

k̃2

ǫ̃

(
∂ũm

∂xn
+

∂ũn

∂xm

)
+ α2

k̃3

ǫ̃2

(
∂ũm

∂xk

∂ũk

∂xn
+

∂ũn

∂xk

∂ũk

∂xm

)
+

+ α3

k̃3

ǫ̃2

∂ũm

∂xk

∂ũn

∂xk
+ α4

k̃3

ǫ̃2

∂ũk

∂xm

∂ũk

∂xn

]
∂ũm

∂xn

(6)

The problem is now the determination of the model coefficients, α1, α2, α3 and
α4. As an aid to this a dimensionless strain parameter, A is introduced:

A =
k̃

ǫ̃

(
∂ũk

∂xl

∂ũk

∂xl

)1/2

(7)

To determine the coefficients the following information is used:
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1. As suggested by previous work it is presumed that cµ(≡ −α1) → 0.09 as
A → 0.

2. The measurements of anisotropy obtained in the low strain nearly homoge-
neous shear flows of [4], see Appendix A.

3. Positivity of the Reynolds normal stresses.

4. Satisfaction of Schwarz’s inequality for the Reynolds shear stresses.

If equation (3) is applied, in conjunction with the turbulence kinetic energy equation,
to nearly homogeneous shear flows then the following expressions can be derived for
the components of the isotropy tensor, bij

b12 =
ũ′′v′′

2k
=

α1

2
A (8)

b11 =
ũ′′2

2k̃
− 1

3
=

2α3 − α4

6
A2 (9)

b22 =
ṽ′′2

2k̃
− 1

3
=

−α3 + 2α4

6
A2 (10)

b33 =
w̃′′2

2k̃
− 1

3
= −α3 + α4

6
A2 (11)

Equations (8) to (11) can be rearranged to yield:

−α1 = cµ = − 2 b12

A
(12)

α3 =

(
4 b11 + 2 b22

A2

)
(13)

α4 =

(
2 b11 + 4 b22

A2

)
(14)

From Eq. (9–11) it is seen that normal anisotropies for A = 0 are identically zero,
irrespective of the values of the model coefficients.

In the nearly homogeneous shear flow of [4] the mean strain parameter A is found
to have value around 2.9 and the values of the components of the anisotropy tensor
are found to be approximately constant with values b11 ≈ 0.137 and b22 ≈ −0.088.
If these are inserted into equations (13) and (14) then the following values result:

α3 = 0.04395

α4 = −0.0093

However these constant values are only appropriate in this particular flow and α3

and α4 must be at least a function of A if negative normal stresses are to be avoided
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in general. For example, for an arbitrary value of the strain parameter A, Equations
(9 – 11) with the α’s constant give:

ũ′′2

k
=

2

3
+ 0.0324A2 (15)

ṽ′′2

k
=

2

3
− 0.02085A2 (16)

w̃′′2

k
=

2

3
− 0.01775A2 (17)

While ũ′′2 is always positive both ṽ′′2 and w̃′′2 will become negative at high values
of mean strain. The most critical situation is for the transverse component where
negative values arise for:

A >

(
2/3

0.02085

)1/2

= 5.65

To avoid this behaviour it is necessary to assume that α3 and α4 be, rather than
constants, functions of the strain parameter, and in particular that they decrease at
least as fast as A−2 for large values of A. It is thus tentatively assumed that:

α3 =

(
α3

[cµ(A)]2

)∣∣∣∣∣
A=2.9

[cµ(A)]2 = c3 [cµ(A)]2 (18)

and

α4 =

(
α4

[cµ(A)]2

)∣∣∣∣∣
A=2.9

[cµ(A)]2 = c4 [cµ(A)]2 (19)

where c3 ≈ 3.6 and c4 ≈ −0.75 as experimental results [4] for A = 2.9 indicate a
corresponding cµ = 0.111.

2.1 Positivity of normal stresses

If equations (18–19) are substituted into equations (9–11) then in order to prevent

ṽ′′2 and w̃′′2 attaining negative values it is easy to show that the function cµ(A) must
obey the constraint:

cµ(A) <
1

A

√
1

0.5 c3 − c4

≈ 0.626

A
(20)

2.2 Schwarz’s inequality

The Reynolds shear stress can be expressed, Equation (8), as:

∣∣∣ũ′′v′′

∣∣∣
k

= A · cµ(A) (21)
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and Schwarz’s inequality requires that the ratio

(ũ′′v′′)2

ũ′′2ṽ′′2

=
9[cµ(A) · A]2

{2 + (2c3 − c4) [cµ(A) · A]2} {2 + (2c4 − c3) [cµ(A) · A]2} (22)

be less than unity, resulting in the condition:
(
5c3c4 − 2

[
c3

2 + c4
2
])

[cµ(A) · A]4 + (2 [c3 + c4]) [cµ(A) · A]2 + 4 > 0 (23)

The roots of the associated equation are then:

[cµ(A) · A]2 =
− (2 [c3 + c4]) ∓

√
(2 [c3 + c4])

2 − 16 (5c3c4 − 2 [c3
2 + c4

2])

2 (5c3c4 − 2 [c3
2 + c4

2])
(24)

The only physical solution results in the constraint

cµ(A) <
1

A

√√√√− (2 [c3 + c4]) −
√

(2 [c3 + c4])
2 − 16 (5c3c4 − 2 [c3

2 + c4
2])

2 (5c3c4 − 2 [c3
2 + c4

2])
≈ 0.525

A
(25)

2.3 Coefficient α2

The coefficient α2 is as yet undetermined, since it multiplies a term which is zero
in thin shear layers. Its determination then requires consideration of more complex
flows. Shih et al. [54] utilises Rapid Distortion Theory (RDT) to recover a relation-
ship among the coefficients, but RDT is known to have little relevance to practical
flows and so the approach is not adopted here. Instead α2 is provisionally assigned
a value of zero. This can be relaxed later if necessary.

2.4 Proposed NLEVM form

The only outstanding issue is the evaluation of α1 or equivalently cµ. A number of
authors have proposed different expressions for cµ as a function of a strain param-
eter, e.g. [54, 30], with a general feature being a value slightly above that of the
standard k − ǫ model, ie cµ = 0.09, for moderate strain rates, (A less than 3), and
an asymptotic decay as the inverse of the strain parameter. Although the former
specification has some justification, e.g., experiments at A = 2.9 indicate cµ = 0.111
- see Appendix A - it has been found in the present investigation that adopting
cµ > 0.09 invariably leads to an excessive centreline velocity decay in jets. For this
reason the following form is proposed for cµ (= −α1) as a function of the strain
parameter:

cµ = cµ,0 = 0.09 for A ≤ A∗

= cµ,0 + aµ (A − A∗)3 for A∗ ≤ A ≤ A∗∗

= bµ/A for A > A∗∗

(26)

where to satisfy constraints (20) and (25) the following values have been selected:

A∗ = 4 A∗∗ = 5
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The coefficients aµ and bµ are determined by requiring that the first and second
derivatives of cµ be continuous at A∗ and A∗∗ leading to:

aµ = −0.0056 bµ = 0.422

In summary the NLEVM coefficients are:

α1 = −cµ(A), α2 = 0, α3 = c3 [cµ(A)]2, α4 = c4 [cµ(A)]2 (27)

with c3 = 3.6 and c4 = −0.75. The functional dependence of cµ on A given by
equation (26) is plotted in Figure (1), together with the constraints (20) and (25),
with the latter being more stringent. Both are both shown to be satisfied. Figure (2)

shows the correlation coefficient Ruv, ie, the square root of Equation (22) resulting
from the proposed model; it is shown to remain bounded with a value well below
unity in all cases, thus ensuring realisability. It is worth noting that the standard
k–ǫ model fails to obey this constraint for A larger than about 7. As a check of

the performance of the proposed model, the anisotropy in the high strain nearly
homogeneous shear flow of Harris et al., [18] (see Appendix B) for which A = 5.5,
is considered. The representative experimentally determined values are:

b11 = 0.168, b22 = −0.134, b33 = −0.034 (28)

compared with the predicted values:

b11 = 0.236, b22 = −0.151, b33 = −0.085 (29)

As is evident the anisotropies are somewhat over predicted. This could be corrected,
but requires a more complex form than (18) and (19) for the coefficients α3 and α4

(ie, c3 and c4 function of A, rather than constant). Such an extension is not pursued
in the present context.

3 Non–Linear Eddy Diffusivity Model (NLEDM)

An approach parallelling that adopted in Sec. 2 is adopted for the scalar flux. If
the scalar flux is presumed to depend only on the turbulence energy and dissipation
rates and the mean velocity and scalar gradients then, analogous to equation (2),
the following general expression, [31], can be written:

−ũ′′

i ξ
′′ = β1

k̃2

ǫ̃

∂ξ̃

∂xi

+
k̃3

ǫ̃2

(
β2

∂ũi

∂xk

+ β3

∂ũk

∂xi

)
∂ξ̃

∂xk

(30)

where ξ represents a scalar quantity and the turbulent scalar flux is now prescribed
as a function of both the mean velocity and scalar gradients.

As in equation (3) the model coefficients are in principle functions of the invari-
ants of ∂ui/∂xj and ∂ξ/∂xi. However an approach similar to that followed for the
α′s will be adopted to determine the three model coefficients, β1, β2 and β3. The
criteria selected to evaluate them in the course of the present research is described
below.
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First, all solutions of the exact equation for a strictly conserved scalar variable
satisfy extremum principles, [43]; the magnitude of any local extrema present in the
initial conditions must decay with time. A consequence of this is that the maximum
and minimum values of the scalar in any resulting steady solution will occur on
the boundaries of the solution domain. The satisfaction of this condition is clearly
desirable in any model and can be used to establish constraints on the values of the
coefficients. The precise value of the coefficients are determined by enforcing compli-
ance of the model with measurements of the stream wise and transverse components
of the scalar flux in equilibrium shear layers.

The equation describing the mean value of a strictly conserved scalar, with the
scalar flux given by equation (30) can be written in the form:

ρ
∂ξ̃

∂t
+ ρ ũl

∂ξ̃

∂xl
=

∂

∂xl

[(µ

σ
δkl + Γkl

) ∂ξ̃

∂xk

]
(31)

with:

Γkl = ρ
k2

ǫ

(
β1δkl + β2

k

ǫ

∂ũl

∂xk

+ β3

k

ǫ

∂ũk

∂xl

)
(32)

Equation (31) can now be used to evaluate the incremental change in ξ with time
at any position within the solution domain, viz :

ξ(t + dt) = ξ(t) +
∂ξ

∂t
dt

= ξ(t) +

(
1

ρ

∂

∂xl

[(µ

σ
δkl + Γkl

) ∂ξ̃

∂xk

]
− ũl

∂ξ̃

∂xl

)
dt (33)

To ensure conformity with the extremum principle the equation (31) can first be
written in principal axes whereby Γij becomes:

Γαα = ρ
k2

ǫ

[
β1 + (β2 + β3)

k

ǫ

∂ũα

∂xα

]
(34)

with no summation implied on α.
At an extrema ∂ξ/∂xi = 0 ∀ i so that the change in ξ over a time interval dt at

the extrema, for high turbulence Reynolds numbers, is given by:

ξ(t + dt) = ξ(t) +
∂ξ

∂t
dt

= ξ(t) +
∑

3

α=1
Γαα

∂2ξ

∂xα∂xα

dt

(35)

Satisfaction of the solutions of equation (31) with the extremum principle then
requires:

Γαα ≥ 0 α = 1, 2, 3 (36)

This clearly imposes conditions on the values of β1, β2 and β3. In general the
coefficients must satisfy:

β1 + (β2 + β3)A ≥ 0 (37)
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To develop matters further it will be presumed that β1 > 0 and that β2 = −β3. This
latter choice is made purely on the grounds of simplicity and the presumption can
be relaxed later if found to be necessary. The conditions imposed by equation (36)
are then automatically satisfied.

To determine the values of the two coefficients the model will be applied to a
two-dimensional equilibrium thin shear layer. In two-dimensions the components of
the scalar flux are:

−ũ′′ξ′′ =
k2

ǫ

{
β1

∂ξ̃

∂x
+ β2

k

ǫ

[(
∂ũ

∂x

∂ξ̃

∂x
+

∂ũ

∂y

∂ξ̃

∂y

)
−
(

∂ũ

∂x

∂ξ̃

∂x
+

∂ṽ

∂x

∂ξ̃

∂y

)]}
(38)

−ṽ′′ξ′′ =
k2

ǫ

{
β1

∂ξ̃

∂y
+ β2

k

ǫ

[(
∂ṽ

∂x

∂ξ̃

∂x
+

∂ṽ

∂y

∂ξ̃

∂y

)
−
(

∂ũ

∂y

∂ξ̃

∂x
+

∂ṽ

∂y

∂ξ̃

∂y

)]}
(39)

In a thin shear layer ∂ũ/∂x, ∂ṽ/∂x and ∂ṽ/∂y are negligible compared with ∂ũ/∂y
while ∂ξ̃/∂x is negligibly small relative to ∂ξ̃/∂y. Thus

−ũ′′ξ′′ ≃ β2

k̃3

ǫ̃2

∂ũ

∂y

∂ξ̃

∂y
(40)

−ṽ′′ξ′′ ≃ β1

k̃2

ǫ̃

∂ξ̃

∂y
(41)

In equilibrium shear layers it is known that experimental measurements of the y–
component of the scalar flux are well reproduced by the expression:

−ṽ′′ξ′′ =
cµ

σt

k2

ǫ

∂ξ̃

∂y
(42)

with Cµ = 0.09 and σt = 0.7. Thus to make Eq. (42) consistent with Eq. (41):

β1 =
cµ

σt

(43)

The relationship (42) is relevant to measurements at relatively low strain. However,
in the framework of the present model it is assumed that its validity can be carried
over a wider range of strain rates by adopting cµ as a function of the strain rate
parameter, A as defined by Eq. (26). With this proviso the coefficient β1 is presumed
given by:

β1 =
cµ(A)

σt
(44)

This function is plotted, as a function of the strain parameter A, in Fig. 3.
To determine β2 use will be made of the experimental observation that the ratio of

the two components of the scalar fluxes is approximately constant in near equilibrium
flows; namely (

ũ′′ξ′′

ṽ′′ξ′′

)

exp

≈ 2 (45)
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Combining equations (40) and (41) gives for this ratio:

(
ũ′′ξ′′

ṽ′′ξ′′

)
=

β2

β1

k

ǫ

∂ũ

∂y
(46)

For an equilibrium flow the velocity gradient can be replaced by the strain parameter,
Eq. (7) so that equation (46) can be written as:

β2 = −2
β1

A
(47)

However this would entail β2 → ∞ for A → 0. A more cautious choice can be
obtained if use is made of the finding that:

√
cµ k ∂ũ/∂y

ǫ
≃ 1 (48)

so that in equilibrium flows equation (46) can also be written:

β2 = −2β1

√
Cµ (49)

As above it is assumed that the validity of equation (49) can be carried over to a
wider range of strain rates by adopting cµ as a function of the strain rate parameter
so that:

β2 = −2
[cµ(A)]3/2

σt

(50)

The coefficient β2 is also plotted in Fig. 3 as a function of the strain parameter.
Finally the third coefficient is determined as

β3(A) = −β2(A) (51)

Note that adopting Eq. (30) to represent the scalar fluxes entails that the pro-
duction term in the scalar variance equation:

P
ξ̃′′2

= − 2 ũ′′

k ξ′′
∂ξ̃

∂xk
(52)

must be expanded as

P
ξ̃′′2

= +2β1

k2

ǫ

∂ξ̃

∂xl

∂ξ̃

∂xl
+ 2

k3

ǫ2

(
β2

∂ũl

∂xk
+ β3

∂ũk

∂xl

)
∂ξ̃

∂xk

∂ξ̃

∂xl
(53)

though with the condition equation (51) the second term on the rhs turns out to be
identically zero.
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3.1 Joint realisability

It will now be checked that the above NLEDM satisfies another crucial requirement
of the closure approximation if solutions are to have physical significance.
Schwarz’s inequality for the stream wise and transverse Reynolds fluxes requires

(ũ′′ξ′′)2 ≤ ũ′′2 · ξ̃′′2 (54)

(ṽ′′ξ′′)2 ≤ ṽ′′2 · ξ̃′′2 (55)

where ξ̃′′2 is the scalar variance. In a mixing layer with a single non zero component
of the velocity gradient, the normal components of interest of the Reynolds stress
can be expressed, according to the NLEVM, by Equations (15,16). As far as the
scalar variance is concerned, in an equilibrium mixing layer this can be obtained
from a balance between the scalar production and dissipation rates, which with the
linear relaxation model leads to:

2β1

k2

ǫ

(
∂ξ̃

∂y

)2

= Cd
ǫ ξ̃′′2

k
(56)

where Cd is a model constant with the commonly accepted value

Cd = 2.0

This leads to the following expression for the scalar variance:

ξ̃′′2 = 2
β1(A)

Cd

k3

ǫ2

(
∂ξ̃

∂y

)2

(57)

Then, with consideration of Equations. (40), (41), (15) and (16), Schwarz’s inequal-
ities can be recast as:

[β2(A)]2
k̃6

ǫ̃4

(
∂ũ

∂y

)2
(

∂ξ̃

∂y

)2

≤
{

2

3
+

1

3
(2c3 − c4) · [cµ(A) · A]2

}
· 2 β1(A)

Cd

k̃4

ǫ̃2

(
∂ξ̃

∂y

)2

(58)

[β1(A)]2
k̃4

ǫ̃2

(
∂ξ̃

∂y

)2

≤
{

2

3
+

1

3
(2c4 − c3) · [cµ(A) · A]2

}
· 2

β1(A)

Cd

k̃4

ǫ̃2

(
∂ξ̃

∂y

)2

(59)
After some manipulation Equations. (59) and (58) result in the respective con-
straints,

|β1(A)| ≤
√

2

Cd

{
2

3
+

1

3
(2c4 − c3) · [cµ(A) · A]2

}
(60)

|β2(A)| <
1

A

√
2

Cd

β1(A)

{
2

3
+

1

3
(2c3 − c4) · [cµ(A) · A]2

}
(61)
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The correlation coefficients between u and ξ and between v and ξ:

Ruξ =

∣∣∣ũ′′ξ′′
∣∣∣

[
ũ′′2 · ξ̃′′2

]1/2
(62)

Rvξ =

∣∣∣ṽ′′ξ′′
∣∣∣

[
ṽ′′2 · ξ̃′′2

]1/2
(63)

are plotted in Fig. 4 for 0 ≤ A ≤ 10 in the fully and for the present choice of
the coefficients and indicate that the model under consideration ensures realisable
solutions in this respect under all circumstances. It can be noted that the correlation
coefficients can attain quite high values for highly strained flows. While such high A’s
are likely to occur 1 rarely in statistically stationary flows they may well occur during
transients, particularly for an injudicious choice of initial conditions. The model
formulated should prevent the appearance of unphysical and potentially destabilising
solutions in these circumstances.

4 Test cases

In this Section the performance of the closures formulated in section 2 and 3 is in-
vestigated through application to swirling flows and comparison of the results with
experimental data. In order to characterise the different test cases three dimen-
sionless groups are considered. The strength of swirl is characterised by the swirl
number, defined as:

S =
1

Re

∫ Re

0

ρ r2 ũ w̃ dr

∫ Re

0

ρ r ũ2 dr

(64)

where Re denotes the radius of the inlet duct. Swirl number accordingly represents
the ratio of the axial flux of angular momentum to the axial flux of linear momentum
(ũ and w̃ denote the stream wise and tangential mean velocity components). The
swirl number has a major effect on determining the flow pattern in purely swirling
flows [5, 6, 68, 29]: with increasing S, the jet spreads progressively outwards, until
for a critical value of around 0.6 recirculation sets on, with the appearance of a
toroidal reverse flow region. The critical value may be different for flows subjected
to very large density variations, see Section 4.2.

For flows featuring a central jet surrounded by a swirling co-flow (as in one of
the test cases considered) an axial momentum ratio is also defined:

J =

∫ Rj

0

ρ r ũ2 dr

∫ Re

Rj

ρ r ũ2 dr

(65)

1In the near wall region of a fully turbulent boundary layer A ≈ 3.3
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where Rj is the radius of the centre jet nozzle. The presence of a central, non-
swirling jet can suppress or displace the recirculation region for high values of swirl
numbers, S.

In combusting flows the density varies over a wide range due to both temperature
and molar mass changes, the latter being due to varying fluid composition. Inert
flows may also experience variable density effects, in this case either because of
differing molar masses or temperatures of the inflowing central jet and co-flow fluids.
It is then useful to introduce a density ratio:

Υ =
ρj

ρo

(66)

where the subscript j denotes conditions in the central nozzle and where the sub-
script o indicates conditions in the incoming (swirling) co-flow. In combusting flows
oxidiser it generally enters as a co-flow. The density ratio strongly affects the mixing
of the jet and the swirling co-flow.

In choosing the appropriate test cases for comparison, attention has been directed
to ensure that they:

• include both inert and reacting flows (ie, jets and flames);

• encompass a range of swirl numbers;

• encompass a range of axial momentum ratios;

• encompass a range of density ratios;

• that detailed measurements of both mean quantities and second–moments
(Reynolds stresses and scalar fluxes) are available;

• that measurements are reported at several downstream stations.

With these considerations in mind two test cases have been identified:

1. inert jets issuing into swirling air [57, 58], with a swirl number S = 2.25,
momentum ratios J spanning the range from 0.032 to 0.475 and density ratios
Υ covering the range 0.228, 1 and 1.52;

2. swirling hydrogen/air flames [65], with swirl numbers S = 0.02, 0.6 and asso-
ciated momentum ratios J = 36.8, 0.412 respectively, while the density ratio
Υ is 0.069.

These test cases are discussed in detail in the next two subsections. Numerical
simulation are performed by means of the finite–volume code BOFFIN [22].

4.1 Swirling jets (So et al. 1984, 1987)

An extensive experimental study on (inert) jets injected into co-flowing swirling
air is reported by So et al. [57, 58]. The swirl number is fixed at 2.25, while the
momentum ratio number is varied between 0.032 and 0.475 in the test cases selected
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for comparison in the present investigation; the density ratio assumes the values
0.228, 1.0, 1.52 through use of different jet fluids. A schematic of the test rig is shown
in Figure (5). The jet nozzle comprises a sudden expansion 12.7 mm upstream of
the discharge plane, introduced in order to ensure that the jet flow is fully turbulent
even for jet Reynolds numbers close to the transitional value. The jet diameter at
the discharge plane is Dj = 8.73 mm and this is taken as a reference length for
these test cases. The nozzle is surrounded by an annulus of inner diameter 53.18
mm and outer diameter Do = 125 mm through which swirling air flows. The swirl is
generated by a flat vane swirler with vanes at an angle of 66o giving a swirl number
of 2.25. The Reynolds number of the co-flowing swirling air is maintained constant
in all cases with a value of 54900 (based on the average velocity across the tube of
diameter Do). Both the central jet and annulus flow issue into a duct of diameter
Do = 125 mm.

In the numerical simulations reported below, the inflow boundary conditions are
estimated on the basis of velocity measurements taken at an axial location close
to the discharge plane. Not all of the large number of conditions measured pro-
vide suitable test cases, either because there are insufficient measurements available
or that negative stream wise velocities are reported very close to the inlet plane.
Accordingly the cases that are retained for validation are labelled as follows

• air jets (unity density ratio):

– uj = 25.4 m/s, resulting in Rej = 14380, J = 0.068 (case 31);

– uj = 66.8 m/s, Rej = 37820, J = 0.475 (case 32);

• helium/air jets (with two different compositions):

– Υ = 0.228, Rej = 2970, uj = 36.5 m/s, J = 0.032 (case 42);

• carbon dioxide jets, Υ = 1.52:

– uj = 25.4 m/s, Rej = 28430, J = 0.104 (case 51);

– uj = 54.0 m/s, Rej = 60440, J = 0.472 (case 52).

where uj denotes the jet bulk velocity. It is to be noted that the inflowing helium/air
jet is fully turbulent in spite of the relatively low jet Reynolds number as a result
of the upstream sudden expansion of the nozzle.

For the simulations inflow profiles are derived from measurements taken at sta-
tion x/Dj = 1 for cases 31, 32, 51 and 52, and at station x/Dj = 3 for case 42.
There are no measurements of the mean and rms profiles of the radial velocity com-
ponent at these stations. The mean radial velocity is thus presumed to be negligible
while the rms is set equal to that of the tangential component. The turbulence
energy dissipation rate at the inflow boundary is specified on the basis of estimated
dissipation length scales. The sensitivity of predictions to the specified dissipation
rates at inflow boundaries is small for all the flows presently considered. Providing
sensible values are chosen the only major influence is on the predicted length of
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the potential core. In all cases the computed results to be presented were obtained
using a 150 × 100 grid in the axial and radial directions respectively. The grid is
slightly stretched, with grid expansion ratios of 1.015 in the axial direction (1.02 for
case 31) and 1.02 in the radial one. Computations with finer and coarser grids have
demonstrated that the results described below are definitely grid–independent.

Figures (6)–(10) show, for each case, the radial profiles of the stream wise and
tangential mean velocities and the two corresponding rms velocities, at several axial
stations. Results are presented against a radial coordinate, made dimensionless with
respect to both jet diameter Dj (lower scale) and the external diameter Do (upper
scale). Test cases 31 and 32 are constant–density, hence only a comparison with the
results obtained with the standard k–ǫ and NLEVM considered. The remaining cases
involve variable–density and results with a full range of models is shown. The results
compared correspond to: k–ǫ; k–ǫ for velocity with NLEDM for the scalar; NLEVM
for the velocities with k–ǫ for the scalar and the complete model, ie, NLEVM with
NLEDM. As is evident the model used for the scalar flux appears to exert very little
influence on the velocities, both mean and rms but this is almost certainly due to
the density ratios under consideration being relatively close to unity.

Due to the relatively limited density variations, averages are indicated with the
over bar conventionally associated with Reynolds averaging, while the computational
results imply Favre–averages (density weighted averages). The difference is generally
found to be quite small for the velocity components; as an illustration measurements,
([24]) in an helium–air mixing layer with a density ratio as small as 0.138 exhibit a
difference between the density weighted and unweighted mean velocities of less than
1%. The difference can however be more substantial for scalar quantities.

Since the main purpose is to compare the results obtained with the various
models (and space limitations prevent a more detailed discussion) the comparisons
are reported in the following concise form for each of the different cases:

Case 31: u appears to be greatly improved by NLEVM, especially close to the axis
in the near field. The standard k–ǫ greatly over predicts the initial ve-
locity decay rate on the centreline, while predicting too high velocities at
the last measuring station. The NLEVM appears to correctly reproduce
the observed trends, resulting in an improved agreement also off–axis at
downstream stations;

w results are more or less the same for both k–ǫ and NLEVM, the former
performing somewhat better in the near field, the latter in the far field;

(u′2)1/2 is uniformly improved with NLEVM compared with the k − ǫ model

(w′2)1/2 same as above.

Case 32: u appears to be somewhat improved by NLEVM, both in the near and far
fields;

w is about the same for the two models;

(u′2)1/2 is better reproduced by NLEVM, except at the axis in the near field
(where neither models perform particularly well);

(w′2)1/2 is also generally better with NLEVM, except at the axis in the near field.
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Case 42: u the performance of k–ǫ and NLEVM is comparable, the former being
somewhat better at the axis, the latter off–axis, but both models fail to
reproduce the recirculation bubble located around r/Dj = 2;

w is somewhat better predicted by NLEVM in the far field;

(u′2)1/2 is better predicted with NLEVM, best with NLEVM and NLEDM;

(w′2)1/2 same as above.

Case 51: u is markedly better with NLEVM;

w is somewhat better predicted by NLEVM;

(u′2)1/2 is markedly better predicted by NLEVM, especially in the near field;

(w′2)1/2 is slightly better predicted by NLEVM at station x/Dj = 20, somewhat
worse at x/Dj = 40.

Case 52: u is again markedly better with NLEVM (though in the near field NLEDM
give a somewhat reduced level of agreement at the axis);

w is also somewhat better predicted by NLEVM;

(u′2)1/2 poorly predicted by both models, nonetheless NLEVM appears to give
somewhat better agreement off–axis;

(w′2)1/2 is somewhat better predicted by NLEVM at station x/Dj = 20, slightly
worse at x/Dj = 40.

Taken together the results obtained with the proposed non linear eddy viscosity
and diffusivity models appear, on the whole, to be encouraging. As noted by So
et al., [58], an efficient mixing enhancement by swirl requires that the heavier fluid
is injected from the central pipe (ie, as a jet, case 51 and 52) because in this case
the jet fluid is pushed radially outward by centrifugal force. In the reverse situation
(lighter jet fluid, case 42), the jet tends instead to be confined close to the centreline,
thereby inhibiting mixing of the two streams.

4.2 Swirling flame (St̊arner and Bilger, 1986)

The experiments carried out by St̊arner and Bilger at the University of Sydney [65],
see also [66], represent the only test case known to the authors of a swirling flow
involving scalar mixing, which report detailed measurements of all three components
of the scalar flux together with the mean scalar. Even in these very detailed experi-
ments there is a lack of certain information for validation, as radial profiles of mean
mixture fraction are not reported. The test rig is sketched in Figure (11). Hydrogen
is injected through the central nozzle of inner diameter 9.9 mm at a bulk velocity
of 139 m/s (with a maximum at the centreline of 177.1 m/s), giving a jet Reynolds
number of 13000. Air is supplied via a surrounding annulus (inner diameter 10.72
mm, outer diameter 18.4 mm) with a swirling motion (generated by vanes at 45o

to the axial direction; see below for bulk velocity); a further outer region (inner
diameter 19.1 mm, bounded by a square duct of 305 mm side) supplies unswirled
air at a bulk velocity ue = 12 m/s. Two operating conditions are considered, an
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essentially non–swirling case with S = 0.02 (when the bulk velocity of swirling air
is limited to 4 m/s), and a swirling one with S = 0.60 (bulk velocity of swirling air
37.8 m/s). The latter value of S usually corresponds to the onset of recirculation;
however, in the present configuration no flow reversal is observed.

Measurements include, for the swirling case, inflow profiles (at x/Dj = 0.2) of
the three mean velocity components, and their intensity, so that inflow boundary
conditions are unambiguous. Similar profiles are not available for the non swirling
case, giving rise to some uncertainty in the inflow conditions to be applied. In
the present simulations the inflow velocity profile for S = 0.02 is obtained from
the corresponding swirling one, by scaling all velocities in the annulus by a factor
4/37.8. Turbulence energy dissipation rate inflow profiles are, as previously, spec-
ified in terms of estimate length scales. For combustion a thermo-chemical closure
model based on the conserved scalar approach with a presumed β-pdf is adopted to
describe hydrogen-air combustion. As for the previous case predictions are shown
for the following model combinations: standard k–ǫ; k–ǫ+NLEDM; NLEVM+k–ǫ
and NLEVM + NLEDM. A 150×100 grid in the axial and radial directions is again
used with a moderate grid expansion ratios (1.002 in the axial direction, 1.012 in
the radial one).

The inverse centreline velocity, expressed in the form:

u0j

u0

=
[uCL − ue]x=0

[uCL − ue]x

is plotted in Figure 12.
The results for the full range of modelling options considered above are shown.

Experiments indicate that the centreline velocity of the swirling flame has an initial
decay rate much steeper than the corresponding non swirling flame. Predictions
by the standard k–ǫ show that this effect is poorly reproduced in the simulations,
this being one of its well–known deficiencies. Instead, predictions by the NLEVM
show that this model is able to reproduce the behaviour for swirling flows quite
correctly, thus marking an important improvement over standard modelling. As far
as scalar transport modelling is concerned, it is seen to play a minor role as far as the
velocity field is concerned, at least in this case. However, the results obtained with
the combined NLEVM and NLEDM exhibit significant difference for swirling and
non swirling flow in the far field. Unfortunately, measurements of the non swirling
case are limited to the region up to x/D = 40, and do not shed light on the issue.

Figures (13) and (14) display radial profiles taken at three axial stations located
at x/Dj = 26, 40, 80, for the swirling case only. Results are presented in Cartesian
form, rather than axisymmetric, to illustrate the asymmetry in some of Reynolds
stress and scalar flux components as well as experimental scatter. Figure (13a)
shows radial profiles of the dimensionless mean stream wise excess velocity, ie, the
quantity

u0

u0j

=
[u − ue]r,x

[uCL − ue]x=0

=
[u − ue]r,x

165.1

A markedly improved prediction by NLEVM is evident near the centreline, especially
at the first station, consistently with the results of Figure (12). In a similar fashion,
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Figure (13b) shows comparisons for the tangential velocity components in the form

w

u0j

=
[w]r,x

[uCL − ue]x=0

=
[w]r,x
165.1

In this latter case the predictions with k–ǫ and NLEVM are about the same accuracy
compared with measurements with a somewhat unclear effect of scalar transport
modelling.

Figure (14) displays the components of the Reynolds stress tensor. In particular,
Figures (14a–c) show results for the normal components, while Figures (14d–f) show
the corresponding shear stress profiles. The normal components are more accurately
reproduced by the NLEVM, this being a possible key to the markedly improved
results shown in Figure (13a) with the model. Predictions for the shear stresses

ũ′′v′′ and ṽ′′w′′ do not show significant difference with the two models though ũ′′w′′,
which is predicted to be identically zero by the k–ǫ model, is at least qualitatively

reproduced by NLEVM. Predictions for ũ′′v′′ and ũ′′w′′ by NLEVM and NLEDM
show a small kink at the centreline at downstream stations, of unclear origin.

Figure (15) displays radial profiles of the stream wise, radial and tangential
components of the scalar flux vector, respectively, ie, those quantities which are the
primary focus of the NLEDM. The predictions of the stream-wise scalar flux with the
standard k–ǫ model are seen to grossly underestimate this component, and further
do not show any sign of the double–peaked structure reported in the experiments.
The nonlinear models in contrast do reproduce both the experimentally observed
order of magnitude and trends. The differences between the computational resulting
from the NLEDM for the scalar fluxes but with the k–ǫ retained for the Reynolds
stresses and those arising from the full non linear model are seen to be relatively
minor. The greatly improved performance of the NLEDM is almost certainly a
consequence of ensuring that the condition corresponding to equation (45) is satisfied
in equilibrium shear flows. The differences between the predictions with the linear
and the nonlinear models is much smaller for the radial component of the scalar flux.
Predictions with the nonlinear models look somewhat better at the first station,
while experimental uncertainties (as apparent from asymmetry of measurements)
preclude a thorough comparison at the second station; at the third station the
performance of both models is similar. As far as the tangential component of the
scalar flux is concerned, the behaviour is somewhat puzzling. The experiments show

positive values of w̃′′ξ′′ for r > 0 with some lack of asymmetry in the profiles evident

near r = 0. In an axisymmetric flow of the type being considered w̃′′ξ′′ should be
zero at r = 0. The k–ǫ model, as anticipated, returns identically zero values of this
component while the nonlinear non linear diffusivity model predicts nonzero values
of roughly the correct magnitude but with the wrong sign over most radial positions.
Only in the outermost part of the flow field (beyond r/D ∼ 3) are the predicted
and measured fluxes the same sign, albeit small in magnitude. The reasons for these
discrepancies are at this stage unclear. In the downstream regions of the flow only
gradients in the radial direction are significant and, given β1 > 0 and β2 < 0 with
both ∂w̃

∂r
and w̃

r
positive in the region close to r = 0 then the predicted profiles

are consistent with the equations given in Appendix C. In any event the tangential
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flux is anticipated to play a minor role in combustors with a close-to-axisymmetric
geometry.

The mean mixture fraction field is now considered. Unfortunately, measured
radial profiles of mean mixture fraction are not available with the only information
reported being the centreline decay, shown in Figure (16). It is seen that nonlinear
models reproduce the initial decay of scalar concentration somewhat better , while
the reverse is true further downstream. The initial trend is consistent with the
observed initial improvement in stream-wise and radial scalar fluxes brought about
by nonlinear models. The downstream trend is less easily explained in the absence
of radial mean scalar measurements. In summary it can be said that for scalar fluxes
the proposed nonlinear model results in significantly improved performance in the
upstream part of the flow, while further downstream results are closer to those given
by standard models.

5 Conclusions

A Non–Linear Eddy Viscosity/Diffusivity Model for turbulent flows has been for-
mulated, featuring quadratic constitutive relationships for both Reynolds stresses
and scalar fluxes. The model coefficients have been determined by enforcing com-
pliance with experimental data obtained in simple and generic turbulent flows and
by ensuring that the model generates realisable solutions for both the velocity and
scalar fields. This is achieved, in part, by making the coefficients depend upon an
appropriately defined strain parameter.

The resulting models have been applied to a wide range of swirling jet flows
and flames for which extensive experimental data is available. A comparison of
the computational results with this data suggests that the formulated models lead
to significantly improved (and substantially improved in some cases) predictions
compared with those that can be achieved with the standard k–ǫ model. However,
some areas remain in which further investigations are desirable. These are related
to:

1. the far–field behaviour of the models - see Figure (12).

2. the degradation of the centre-line mean conserved scalar with NLEDM for
swirling flames (despite greatly improved scalar flux profiles) - see Figure (16).

A major positive feature of the proposed model form is that it appears to be
robust and gives rise to smooth and rapidly converging simulations; a feature al-
most certainly due to the ‘realisable’ nature of the formulation. Further work should
involve evaluating the performance of the model under a wider range of flow condi-
tions, i.e., not restricted to confined swirling flows.
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Appendix A

Champagne et al. [4] consider an equilibrium shear layer with mean velocity gradient

∣∣∣∣
∂ũ

∂y

∣∣∣∣ = 12.9 s−1

The normal components of the Reynolds stress at the centreline can be recovered
after the ratios

√
u′2

Uc
= 0.018,

√
v′2

Uc
= 0.013,

√
u′2

Uc
= 0.014

where Uc = 12.4 m s−1 is the mean centreline velocity. The turbulent kinetic energy
then results as

k = 0.05297m2 s
−2

while the viscous dissipation rate is estimated by the authors, on the basis of equi-
librium between production and dissipation, to be

ǫ = 0.235m2 s−3

The strain parameter for this case is accordingly identified as

A =
k

ǫ

∣∣∣∣
∂ũ

∂y

∣∣∣∣ = 2.908

The measured Reynolds shear stress is reported as

−u′v′

U2
c

= 0.000111

and cµ (= −α1) can accordingly be determined, after equation (8) as

cµ,1 =
1

A

| u′v′ |
k

=
1

A

u′v′

U2
c

U2

c

k
= 0.111

The anisotropies of the normal components are:

b11 =
u′2

2k
−1

3
= 0.1369134, b22 =

v′2

2k
−1

3
= −0.08805032, b33 =

w′2

2k
−1

3
= −0.04886309
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Appendix B

Harris et al. [18] consider a shear layer with P/ǫ = 1.8 and mean velocity gradient

∣∣∣∣
∂ũ

∂y

∣∣∣∣ = 44.0 s−1

The normal components of the Reynolds stress are reported as

√
u′2 = 0.641 m s−1,

√
v′2 = 0.404 m s−1,

√
u′2 = 0.495 m s−1

Accordingly, the turbulent kinetic energy is k = 0.409561 m2 s−2, while the vis-
cous dissipation rate is estimated by the authors from the turbulent kinetic energy
equation as

ǫ = 3.28 m2 s−3

The strain parameter for this case is accordingly identified as

A =
k

ǫ

∣∣∣∣
∂ũ

∂y

∣∣∣∣ = 5.494

The measured Reynolds shear stress is reported as

−u′v′ = 0.1217 m2 s−2

and cµ (= −α1) can accordingly be determined, after equation (8) as

cµ,2 =
1

A

| u′v′ |
k

= 0.054085

The anisotropies of the normal components are

b11 =
u′2

2k
−1

3
= 0.168278, b22 =

v′2

2k
−1

3
= −0.134076, b33 =

w′2

2k
−1

3
= −0.034202
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Appendix C

The total (molecular plus turbulent) scalar flux is denoted as ζ , then

ζi =
µ

σ

∂ξ̃

∂xi

− ρ ũ′′

i ξ
′′

with σξ indicating the molecular Prandtl/Schmidt number. The i–th component of
ζ can be modelled, following (30), in the form

ζi =

(
µ

σ
+ β1 ρ

k2

ǫ

)
∂ξ̃

∂xi
+ ρ

k3

ǫ2

(
β2

∂ũi

∂xk
+ β3

∂ũk

∂xi

)
∂ξ̃

∂xk

and with a simple manipulation the scalar derivative can be taken out to give

ζi =

[(
µ

σ
+ β1 ρ

k2

ǫ

)
δik + β2 ρ

k3

ǫ2

∂ũi

∂xk

+ β3 ρ
k3

ǫ2

∂ũk

∂xi

]
∂ξ̃

∂xk

with δik indicating Kronecker’s operator. This can be formally recast as the product
of a suitably defined tensorial effective diffusivity Γik and the mean scalar gradient
vector:

ζi = Γik
∂ξ̃

∂xk

The components of Γik turns out to be (in cylindrical coordinates x, θ, r, with cor-
responding velocity components u, v, w for ease of reference)

Γxx =
µ

σ
+ β1 ρ

k2

ǫ
+ (β2 + β3) ρ

k3

ǫ2

∂ũ

∂x

Γxr = + β2 ρ
k3

ǫ2

∂ũ

∂r
+ β3 ρ

k3

ǫ2

∂ṽ

∂x

Γxθ = + β2 ρ
k3

ǫ2

1

r

∂ũ

∂θ
+ β3 ρ

k3

ǫ2

∂w̃

∂x

Γrx = + β2 ρ
k3

ǫ2

∂ṽ

∂x
+ β3 ρ

k3

ǫ2

∂ũ

∂r

Γrr =
µ

σ
+ β1 ρ

k2

ǫ
+ (β2 + β3) ρ

k3

ǫ2

∂ṽ

∂r

Γrθ = + β2 ρ
k3

ǫ2

(
1

r

∂ṽ

∂θ
− w̃

r

)
+ β3 ρ

k3
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∂r

Γθx = + β2 ρ
k3
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∂w̃

∂x
+ β3 ρ

k3
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1

r

∂ũ

∂θ

Γθr = + β2 ρ
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∂r
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)
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Γθθ =
µ

σ
+ β1 ρ

k2

ǫ
+ (β2 + β3) ρ

k3

ǫ2

(
1

r

∂w̃

∂θ
+

ṽ

r

)

The scalar diffusion term at the RHS of the mean scalar equation takes therefore
the form

∂ζk

∂xk
=

∂

∂x

[
Γxx

∂ξ̃

∂x
+ Γxr

∂ξ̃

∂r
+ Γxθ

1

r

∂ξ̃

∂θ

]
+

+
1

r

∂

∂r

[
r

(
Γrx

∂ξ̃

∂x
+ Γrr

∂ξ̃

∂r
+ Γrθ

1

r

∂ξ̃

∂θ

)]
+

+
1

r

∂

∂θ

[
Γθx

∂ξ̃

∂x
+ Γθr

∂ξ̃

∂r
+ Γθθ

1

r

∂ξ̃

∂θ

]

This expression must be compared to the one holding when the standard gradient
transport is adopted:

∂ζk

∂xk

=
∂

∂x

(
Γ

∂ξ̃

∂x

)
+

1

r

∂

∂r

(
r Γ

∂ξ̃

∂r

)
+

1

r

∂

∂θ

(
Γ

1

r
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∂θ

)
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List of figure captions

1. Coefficient cµ as a function of A: —– —– proposed form (NLEVM), — — —
Schwarz’s inequality constraint, — · — positivity constraint.

2. Correlation coefficient for shear stress. ———- k–ǫ, —– —– proposed form
(NLEVM).

3. NLEDM coefficients β1 and β2 as a function of strain parameter A.

4. Velocity–scalar correlation coefficients.

5. Sketch of the experimental test rig of So et al. (1984, 1987). —– —– mean
axial velocity profile at x/Dj = 1 (referring to case 31).

6. Case 31 (air jet in co-flowing air, uj = 25.4 m/s), comparison of (top left)
axial mean velocity, (top right) tangential mean velocity, (bottom left) axial
rms velocity, (bottom right) tangential rms velocity at different transverse
stations. � measurements, ———- k–ǫ, —– —- NLEVM.

7. Case 32 (air jet in co-flowing air, uj = 66.8 m/s), comparison of (top left)
axial mean velocity, (top right) tangential mean velocity, (bottom left) axial
rms velocity, (bottom right) tangential rms velocity at different transverse
stations. � measurements, ———- k–ǫ, —– —- NLEVM.

8. Case 42 (He/air jet in co-flowing air, uj = 36.5 m/s), comparison of (top left)
axial mean velocity, (top right) tangential mean velocity, (bottom left) axial
rms velocity, (bottom right) tangential rms velocity at different transverse
stations. � measurements, ———- k–ǫ, — · — · — k–ǫ + NLEDM, —– —-
NLEVM, — · · — · · — NLEVDM.

9. Case 51 (CO2 jet in co-flowing air, uj = 25.4 m/s), comparison of (top left)
axial mean velocity, (top right) tangential mean velocity, (bottom left) axial
rms velocity, (bottom right) tangential rms velocity at different transverse
stations. � measurements, ———- k–ǫ, — · — · — k–ǫ + NLEDM, —– —-
NLEVM, — · · — · · — NLEVDM.

10. Case 52 (CO2 jet in co-flowing air, uj = 54 m/s), comparison of (top left)
axial mean velocity, (top right) tangential mean velocity, (bottom left) axial
rms velocity, (bottom right) tangential rms velocity at different transverse
stations. � measurements, ———- k–ǫ, — · — · — k–ǫ + NLEDM, —– —-
NLEVM, — · · — · · — NLEVDM.
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