FUNDAMENTALS OF ROCKET PROPULSION Seminar at Universidad de Buenos Aires September 2018

D. Lentini Sapienza Università di Roma

1. INTRODUCTION

• TRANSPARENCIES AVAILABLE ON WEBSITE:

dma.dima.uniroma1.it:8080/STAFF2/lentini.html (under *Lecture Notes*)

- \bullet diego.lentini@uniroma1.it, tel. ++39–0644585281
- CLASSICAL TEXTBOOK: G.P. Sutton and O. Biblarz, *Rocket Propulsion Elements*, now 9th ed., Wiley, 2016

1.2 GOALS OF SPACE PROPULSION

- *PROPELLERE* (Latin) = 'PUSH FORWARD' IN ORDER TO:
 - ATTAIN VERY HIGH SPEED
 - OVERCOME GRAVITY/AERODYNAMIC FORCES
 - MANOUVRES
 - ATTITUDE ADJUSTMENT
 - DECELERATE (RE-ENTRY, SOFT LANDING)
- THRUST GENERATED AS REACTION TO EXPULSION OF A *PROPULSIVE FLUID*
- KEY REQUIREMENT: LIGHTWEIGTH (BOTH ENGINE AND PROPELLANTS)

1.3 THRUST GENERATION

• REACTION TO EJECTION OF PROPULSIVE FLUID MOMENTUM:

- ROCKET ENGINE: PROPELLANTS STORED ON BOARD $\rightarrow PRODUCTS$

1.4 ENGINEERING GOAL

• ATTAIN GIVEN TARGET AT MINIMUM COST

• COSTS OF A SPACE MISSION:

- LAUNCHER
- (PAYLOAD)
- LAUNCH OPERATIONS
- MONITORING
- INSURANCE
- PROPELLANTS

•••

1.5 PERFORMANCE AND PRICE OF SOME ROCKET ENGINES

Engine	thrust	adopted by	price	
	sea level/vacuum			
	\mathbf{kN}		M\$	
Vulcain 2	$960\ /\ 1\ 359$	Ariane 5	12	(2017)
RS-25	1860~/~2279	Space Shuttle	50	(2011)
RS-68	2950~/~3137	Delta IV	15	(2006)
RD-180	3830/4150	Atlas V	23.5	(2017)

- SEARCH FOR SIMPLICITY (TO REDUCE COSTS AND IMPROVE RELIABILITY) \rightarrow CONTAIN PART COUNT

1.6 ARIANE 5, RD–170

1.7 CLASSIFICATION BASED ON ENERGY SOURCE

- EXHAUST JET MOMENTUM GENERATED BY MEANS OF ENERGY...
 - * CHEMICAL: OXIDIZER/FUEL, MONO-PROPELLANT (THERMAL)
 - * SOLAR: THERMAL, ELECTRIC
 - * (ELECTRIC): SOLAR, NUCLEAR, CHEMICAL
 - *** NUCLEAR: THERMAL**

1.8 CLASSIFICATION BASED ON *PROPULSIVE PRINCIPLE*

• TRASFORMATION OF PRIMARY ENERGY INTO JET KINETIC ENERGY:

- 1. THERMAL: CHEMICAL, NUCLEAR, SOLAR
- 2. *ELECTROSTATIC* (IONS): (ELECTRICAL) \leftarrow SOLAR
- 3. *ELECTROMAGNETIC* (PLASMA): (ELECTRICAL) \leftarrow SOLAR
- 2and3 GIVE LOW RATIOS THRUST/WEIGHT (CANNOT LIFT-OFF FROM THE GROUND)

1.9 CHEMICAL ROCKET ENGINES (THERMAL)

1.10 ELECTRIC THRUSTERS

(IONS)

ELECTROMAGNETIC (PLASMA)

2.1 FUNDAMENTALS OF COMPRESSIBLE FLOWS

- THERMAL ROCKETS USE A FLUID, CARRYING ENERGY IN THE FORM OF HEAT
- HEAT TRANSFORMED INTO KINETIC ENERGY IN THE *NOZZLE* TO GENERATE *THRUST*
- LAWS FOR *COMPRESSIBILE* FLOWS (HIGH SPEED $u \rightarrow \text{VARIABLE } \rho$):
 - MASS CONSERVATION
 - MOMENTUM CONSERVATION
 - ENERGY CONSERVATION

2.2 SOUND SPEED, MACH NUMBER

•
$$a = \sqrt{\gamma R T} = \sqrt{\gamma \frac{p}{\rho}}$$

ullet M = u/a

2.3 EQS. OF MOTION: QUASI 1–D FLOW

- $\bullet \ u, p, T = f(x), \ A = f(x)$
- 1 QUANTITY TO IDENTIFY STATE OF MOTION (e.g., VELOCITY COMPONENT u, or M)
- 2 QUANTITIES TO IDENTIFY THERMODYNAMIC STATE (e.g., p, T)

2.4 FLOW EVOLUTION IN A DUCT SET MOTION EQS.

- 3 EQS. (MASS, MOMENTUM, ENERGY) in u, p, T
- IF DETERMINANT OF COEFFICIENT MATRIX $\neq 0 \rightarrow 1$ SOLUTION
- IF DETERMINANT OF COEFFICIENT MATRIX = $0 \rightarrow M = 1 \rightarrow MORE$ THAN 1 SOLUTION

2.5 FLOW WITH AREA CHANGE (ISENTROPIC)

- CRITICAL SECTION (UNITY MACH no.) <u>MUST</u> BE AT THE NOZZLE THROAT (dA = 0)
- TO ATTAIN M = 1 AT THROAT, $p_c \ge 2 \cdot p_a$

• CONVERGING DUCTS (dA < 0):

 $du \left\{ egin{array}{l} > 0 \ \ {
m for} \ M < 1 \ < 0 \ \ {
m for} \ M > 1 \end{array}; dp \ \left\{ \begin{array}{l} < 0 \ \ {
m for} \ M < 1 \ > 0 \ \ {
m for} \ M > 1 \end{array}; dT \ \left\{ \begin{array}{l} < 0 \ \ {
m for} \ M < 1 \ > 0 \ \ {
m for} \ M > 1 \end{array}
ight\}$

 \circ DIVERGING DUCTS (dA > 0):

 $du \begin{cases} < 0 & \text{for } M < 1 \\ > 0 & \text{for } M > 1 \end{cases}; dp \begin{cases} > 0 & \text{for } M < 1 \\ < 0 & \text{for } M > 1 \end{cases}; dT \begin{cases} > 0 & \text{for } M < 1 \\ < 0 & \text{for } M > 1 \end{cases}$

2.6 CHOCKED FLOW AT THE THROAT $(M_t = 1)$ (AREA–MACH no. LAW)

• SECTION $1 = t \ (M = 1), \ 2 = \text{GENERIC ONE}$

• PER EACH VALUE OF $A/A_t \begin{cases} \text{SUBSON. SOLUT.} \\ \text{SUPERSON. SOLUT} \end{cases}$

2.7 MASS FLOW RATE FOR ISENTROPIC, CHOCKED FLOW

•
$$M_t = 1 \rightarrow \qquad \dot{m} = \Gamma \frac{p_c}{\sqrt{R T_c}} A_t$$
 (2)

• GIVEN THE VALUES UPSTREAM OF THE NOZZLE (COMBUSTION CHAMBER) T_c, p_c and $A_t \rightarrow \dot{m} \text{ FIXED}$

2.8 ISENTROPIC/NON–ISENTR. SOLUTIONS

$$rac{A}{A_t} = rac{1}{M} \Biggl(rac{1 \, + rac{\gamma - 1}{2} M^2}{rac{\gamma + 1}{2}} \Biggr)^{rac{\gamma + 1}{2(\gamma - 1)}}$$

(CHOCKED THROAT)

- SINGLE VALUE A/A_t PER EACH M, BUT...
- 2 VALUES M PER EACH VALUE A/A_t
- WHICH SOLUTION WILL PREVAIL? IT DEPENDS UPON RATIO p_a/p_c (ambient/chamber)

 $(p_{sub}, p_{sup} \text{ exit pressure of subsonic/supersonic isentropic solutions}$ A_{sh} area of cross-section where normal shocks takes place)

2.9 NORMAL SHOCK RELATIONSHIPS

 $2 \rightarrow \text{CONDITIONS}$ DOWNSTREAM OF SHOCK

3.1 PERFORMANCE INDICES

• IDENTIFY PERFORMANCE INDICES (THRUST, EXHAUST VELOCITY, SPECIFIC IMPULSE, PROPELLANT CONSUMPTION, ...)

• THRUST GENERATION

\rightarrow APPLY MOMENTUM EQ.

• THRUST = IMPULSIVE THRUST + PRESSURE THRUST

3.3 CONDITIONS FOR OPTIMAL THRUST

$$F = \dot{m} u_e + A_e (p_e - p_a) \tag{5}$$

- ullet GIVEN $A_t, T_c, p_c
 ightarrow \dot{m} ext{ (FOR CHOCKED FLOW)}$
- ullet SEEK FOR MAXIMUM BY DIFFERENTIATION wrt $A_e
 ightarrow dA_e, \, du_e, \, dp_e$

$$egin{aligned} dF &= \dot{m}\,du_e + A_e\,dp_e + (p_e - p_a)\,dA_e \ &= \ &= A_e(
ho_e\,u_e\,du_e + dp_e) + (p_e - p_a)\,dA_e = (p_e - p_a)\,dA_e \ &= \ &(6) \end{aligned}$$

- $p_e = p_a$ (ADAPTED NOZZLE)
- p_a VARIES WITH ALTITUDE
- PRESSURE TERM $A_e(p_e p_a)$ USUALLY SMALL

3.4 EFFECTIVE EXHAUST VELOCITY

• FOR AN ADAPTED NOZZLE:

$$\boldsymbol{F} = \dot{\boldsymbol{m}} \, \boldsymbol{u}_{\boldsymbol{e}} \tag{7}$$

• OTHERWISE:

$$\boldsymbol{F} = \dot{\boldsymbol{m}} \, \boldsymbol{u_{eff}} \tag{8}$$

• BY DEFINING

$$\boxed{u_{eff} = \frac{F}{\dot{m}}} = u_e + \frac{(p_e - p_a) A_e}{\dot{m}}$$
(9)

3.5 ROCKET PERFORMANCE INDICES

• EFFECTIVE EXHAUST VELOCITY (in m/s)

$$u_{eff} = \frac{F}{\dot{m}}$$
(10)

 $\bullet \ SPECIFIC \ IMPULSE \ ({\rm in \ s}; \ {\rm more \ used \ on \ historical \ grounds})$

$$I_{sp} = \frac{F}{\dot{w}}$$
(11)

$$I_{sp} = \frac{F}{g_0 \dot{m}} \rightarrow I_{sp} = \frac{u_{eff}}{g_0}$$
 (12)

$$g_0 = 9.80665 \frac{\mathrm{m}}{\mathrm{s}^2}$$
 (13)

• ENGINE THRUST/WEIGHT RATIO

$$\frac{F}{w_{eng}} = \frac{F}{g_0 m_{eng}} \tag{14}$$

3.6 TYPICAL VALUES OF ROCKET PERFORMANCE INDICES

Propulsion system	${u_{eff} \over { m m/s}}$	F/w_{eng}
Chemical, liquid propellants Chemical, solid propellants	$2500 \div 4600$ $2000 \div 3000$	$50 \div 100$
Resistojet Arcjet	$2000 \div 8000 \\ 4000 \div 20000$	$\begin{array}{c} 0.06\\ 0.01 \end{array}$
Electrostatic Electromagnetic	$25000 \div 34000$ $3000 \div 12000$	$\begin{array}{c} 0.001\\ 0.0001\end{array}$

4.1 SPACE MISSIONS REQUIREMENTS (Δv)

- PROPELLANT MASS >80%
 → TIGHT COUPLING BETWEEN DESIGN OF LAUNCHER AND PROPULSION SYSTEM
- HIGH COST ORBIT INJECTION:
 - LEO(LOW EARTH ORBIT)
 - GEO(GEOSTATIONARY EQUATORIAL ORBIT
 - COST GEO \simeq COST LEO \cdot (5÷10)

4.2 BREAKDOWN OF LAUNCHER COST

- PROPULSION SYSTEM DOMINATING: 44% TO 59%; > 70% INCLUDING TANKS
- PLUS COSTS LAUNCH OPERATIONS, TRACKING, INSURANCE...

4.3 WHY USING ROCKETS?

- SPACE MISSIONS REQUIRE:
 - VERY HIGH SPEED

– OPERATING OUTSIDE THE ATMOSPHERE

- ullet THRUST JET ENGINE LIMITED BY u_e-v
- ROCKET THRUST INDEPENDENT OF v \rightarrow ANY v CAN BE ATTAINED (IN PRINCIPLE)
- (u_e jet exit velocity, v aircraft/rocket speed)

4.4 CIRCULAR ORBIT VELOCITY

- *m* SATELLITE MASS
- M_E EARTH MASS
- G UNIVERSAL GRAVITATIONAL CONST.
- r ORBIT RADIUS
- μ_E EARTH SOURCE POTENTIAL CONST.

$$\frac{m v^2}{r} = G \frac{m M_E}{r^2} \tag{15}$$

$$\mu_E = G M_E = 3.986 \cdot 10^{14} \frac{\text{m}^3}{\text{s}^2}$$
 (16)

$$\boldsymbol{v_c} = \sqrt{\frac{\boldsymbol{\mu_T}}{r}} \tag{17}$$

• FOR AN ORBIT OF ALTITUDE $h=0 \rightarrow r=R_{E,equa}$

$$v_c = \sqrt{\frac{3.986 \cdot 10^{14}}{6378 \cdot 10^3}} = 7905 \frac{\mathrm{m}}{\mathrm{s}}$$
 (18)

• FOR ORBIT at $h=200 \text{ km} \rightarrow v_c \simeq 7800 \text{ m/s}$ • $\Delta v \text{ IDEAL}$

4.5 DEFINITION OF LAUNCHER MASSES

- m_{pl} PAYLOAD MASS
- m_p PROPELLANT MASS
- m_s STRUCTURAL (INERT) MASS
- m_0 LAUNCHER INITIAL MASS
- m_f LAUNCHER FINAL MASS

$$m_0 = m_{pl} + m_p + m_s$$
 (19)

$$\boldsymbol{m_f} = \boldsymbol{m_{pl}} + \boldsymbol{m_s} \tag{20}$$

$$\boldsymbol{m}_{\boldsymbol{f}} = \boldsymbol{m}_{\boldsymbol{0}} - \boldsymbol{m}_{\boldsymbol{p}} \tag{21}$$

4.6 DEFINITION OF MASS RATIOS

• MASS RATIO (FINAL/INITIAL)

$$M\!R = \frac{m_f}{m_0} \tag{22}$$

• PAYLOAD RATIO:

$$\lambda = \frac{m_{pl}}{m_0} \tag{23}$$

• STRUCTURAL COEFFICIENT

$$\kappa_s = \frac{m_s}{m_p + m_s} \tag{24}$$

4.7 TSIOLKOVSKY EQUATION

• RELATES PROPELLANT MASS to REQUIRED Δv • HP: 1. THRUST *F* ONLY FORCE ON ROCKET;

2. THRUST ALIGNED WITH SPEED

3. EFF. EXHAUST VELOC. $u_{eff} = F/\dot{m} = \text{const};$

$$\Delta v = u_{eff} \log_e \frac{m_0}{m_f}$$
(25)

$$\boldsymbol{m_p} = \boldsymbol{m_0} - \boldsymbol{m_f} \tag{26}$$

4.8 OVERCOMING TSIOLKOVSKY'S EQ. LIMITS

- F ONLY FORCE, ALIGNED WITH ROCKET \vec{v}
- BUT THERE ARE ALSO WEIGHT+AEROD. DRA
- F NOT ALIGNED WITH \vec{v} DURING ASCENT
- ightarrow PROPULSIVE LOSSES Δv_{losses}

$$\Delta v_{real} = \Delta v_{ideal} - \Delta v_{losses}$$
 (27)

• LET'S INTRODUCE AN EFFECTIVE Δv

 $\Delta v_{eff} = \Delta v_{ideal} + \Delta v_{losses}$ (28)

- USE TSIOLKOVSKY WITH Δv_{eff}
- Δv_{losses} DEPENDS ON SPECIFIC TRAJECTORY, ANYWAY RATHER WELL IDENTIFIED:
- e.g., LAUNCH TO LEO Δv_{losses} =1600 2000 m/s
- $ightarrow \Delta v_{LEO} \simeq 9500 {
 m ~m/s}$
 - UP TO 465 m/s CAN BE RECOVERED FROM EQUATORIAL LAUNCH DUE EAST
 - u_{eff} NOT CONSTANT, ESPECIALLY FIRST STAGE AND BLOWDOWN SATELLITES

4.9 Δv REQUIREMENTS OF SOME MISSIONS

InterContinental Ballistic Missiles (ICBM)	8000	m/s
Low Earth Orbit (LEO)	9000	m/s
escape from Earth's gravity; Moon impact	12500	m/s
Geostationary Equatorial Orbit (GEO)	13000	m/s
soft landing on the Moon	15000	m/s
round trip to the Moon	18000	m/s
round trip to Venus/Mars fi	rom 18000	m/s
	to 27000	m/s
· · · · · · · · · · · · · · ·	50	m/s
compensation of orbital perturbations	50	year

• GOAL OF THE PROPULSION SYSTEM: DELIVER A VELOCITY INCREMENT Δv

• BUT WHAT REALLY MATTERS IS THE $PAYLOAD \; RATIO \; \lambda = m_{pl}/m_0$

4.11 PAYLOAD RATIO

$$\lambda = 1 - \frac{1 - MR}{1 - \kappa_s}$$
(29)

• WE WISH HIGH u_{eff} AND LOW κ_s , BUT...

5.1 THERMAL ROCKET ENGINES

• THERMAL ENERGY CONVERTED INTO KINETIC ENERGY BY NOZZLE

LIQUID PROP. SOLID PROP.

ELECTROTHERMAL SOLAR THERMAL NUCLEAR THERMAL

5.2 CHARACTERISTIC INDICES

$$F=\dot{m}\,u_e\,+\,\left(p_e-p_a
ight)A_e$$

$$F=p_{c}\,A_{t}\,\left\{\sqrt{rac{2\gamma}{\gamma-1}\left[1-\left(rac{p_{e}}{p_{c}}
ight)^{rac{\gamma-1}{\gamma}}
ight]}+rac{A_{e}}{A_{t}}\left(rac{p_{e}}{p_{c}}-rac{p_{a}}{p_{c}}
ight)
ight\}$$

- $u_{eff} = F/\dot{m}$ EFFECT. EXHAUST VEL. (m/s)
- CAN BE SPLIT IN PRODUCT 2 COEFFICIENTS:
 - CHARACTERISTIC VELOCITY c^* , DETERMINED BY <u>COMBUSTION CHAMBER</u> - THRUST COEFFICIENT C_F ,

DETERMINED BY <u>NOZZLE</u> $\varepsilon = A_t / A_e \quad \frac{\text{EXPANSION}}{\text{RATIO}}$

$$egin{aligned} \hline c^* &= rac{p_c\,A_t}{\dot{m}} = rac{1}{\Gamma} \sqrt{rac{\mathcal{R}\,T_c}{\mathcal{M}}}; & \hline C_F &= rac{F}{p_c\,A_t} \ & \ \hline &
ightarrow & u_{eff} = c^*\,\cdot\,C_F \end{aligned}$$

5.3 THRUST COEFFICIENT

SEPARATION FOR $p_e < (0.25 \div 0.4) p_a$

• HIGHER RATIOS $p_c/p_a \rightarrow$ HIGHER C_F BUT... REQUIRE HIGHER $\varepsilon = A_e/A_t \rightarrow$ HIGHER NOZZLE WEIGHT, FRICTION LOSSES

5.4 EFFECT OF EXPANSION RATIO ε ON NOZZLE WEIGHT, EFFICIENCY η_n AND I_{sp}

5.5 NOZZLE GEOMETRY: CONICAL vs. BELL

• $12^{\circ} \leq \alpha \leq 18^{\circ}$ FOR CONICAL NOZZLES

- FOR BELL NOZZLES:
- SEMI-ANGLE IMMEDIATELY DOWNSTREAM OF THROAT $\sim 30^{\circ} \div 60^{\circ}$, AT EXIT $2^{\circ} \div 8^{\circ}$
- \rightarrow SMALLER DIVERGENCE LOSSES
- \rightarrow SHORTER (LIGHTER)

bell (or contoured)

5.6 PERFORMANCE IN VACUUM OF DIFFERENT PROPELLANT COMBINATIONS

• $p_c = 10$ MPa, $\varepsilon = 45$

5.7 COMBUSTION CHAMBER CONDITIONS EFFECT OF OXIDIZER/FUEL MASS RATIO O/F(MIXTURE RATIO)

LH/LOX at $p_c = 7$ MPa

• BUT LIQUID HYDROGEN DENSITY IS VERY LOW, INCREASING FUEL MASS \rightarrow HEAVY TANKS

5.8 NOZZLE BEHAVIOUR FOR VARYING ALTITUDE

• TO ADAPT NOZZLE TO DECREASING p_a DURING ASCENT, WE'D NEED A VARIABILE ε

6.1 LIQUID–PROPEL. ROCKET ENGINES (LRE)

- 1. PROPELLANT TANKS
- 2. FEED SYSTEM, with SUBSYSTEMS:
 - <u>TURBOPUMPS</u> or PRESSURE GAS
 - FEED LINES
 - VALVES
- 3. THRUST CHAMBER, with SUBSYSTEMS:
 - INJECTORS
 - COMBUSTION CHAMBER
 - NOZZLE
 - COOLING SYSTEM
 - IGNITION SYSTEM
 - PROS/CONS:
 - HIGH PERFORMANCE (u_{eff})
 - RE–IGNITABLE, THROTTLÉABLE
 - COMPLEX, COSTLY
 - CANNOT BE EASILY SCALED UP/DOWN

6.2 OXIDIZERS

 $\frac{\text{OXYGEN}}{\text{CRYOGENIC}} \begin{array}{l} \text{(O}_2) \\ \text{I}_b = 90 \text{K} (1 \text{ atm}) \end{array} \right], \rho = 1140 \text{kg/m}^3$

$\frac{\text{NITROGEN TETROXIDE}}{\text{STORABLE } [T_{fr} = 262 \text{ K}, T_b = 294 \text{ K} (1 \text{ atm})],}\\\rho = 1450 \text{ kg/m}^3, \text{TOXIC, CORROSIVE}$

6.3 FUELS

HYDROCARBONS (HC; C_nH_m , CH_x)
CHEAP, WIDELY AVAILABLE:
 $\underline{KEROSENE}$ (~ $CH_{1,96}$), STORABLE, $\rho \sim 800$
 kg/m^3 , (USA: RP-1, MINIMAL FOULING);
 $\underline{METHANE}$ (CH₄), CRYOGENIC (T_b =112 K),
 $\rho = 425 \text{ kg/m}^3$;

 $\frac{\text{HYDROGEN}}{\text{CRYOGENIC}} \begin{array}{l} (\text{H}_2) \\ (T_b = 20 \text{ K}), \text{ VERY LOW } \rho = 70 \text{ kg/m}^3 \end{array}$

<u>HYDRAZINE</u> (N_2H_4)

STORABLE (T_{fr} =275K, T_b =387K), ρ =1020 kg/m³, TOXIC, CORROSIVE, CARCINOGEN

 $egin{aligned} rac{ ext{UNSYMMETRICAL DIMETHILHYDRAZINE}}{ ext{(UDMH}} & (ext{CH}_3)_2 ext{NNH}_2 &\sim ext{HYDRAZINE BUT MORE STABLE} & (T_{fr} = 216 ext{ K}, extsf{T}_b = 336 ext{ K}), \
ho = 850 ext{ kg/m}^3 & \end{array}$

 $\frac{\text{MONOMETHILHYDRAZINE}}{\sim \text{HYDRAZINE}, \text{ MORE STABLE}} \text{ (MMH), CH_3NHNH_2}$

 $(T_{fr}=221 \text{ K}, T_b=361 \text{ K}), \rho=875 \text{ kg/m}^3$

AEROZINE : MIXTURE 50% UDMH, 50% N₂H₄

- <u>HYDRAZINE</u> $(N_2H_4), u_{eff,vac}$ UP TO 2300 m/s
- DECOMPOSITION BY CATALYST (T)
- (UDMH and MMH TOO MUCH STABLE)

6.5 THRUST CHAMBER

• COMPONENTS:

- INJECTION PLATE
- COMBUSTION CHAMBER
- -**NOZZLE**
- COOLING SYSTEM
- IGNITION SYSTEM

6.6 THRUST VECTOR CONTROL (TVC)

$$\dot{m}_i = C_d A_i \sqrt{2\,
ho_p\,\Delta p}$$
 .

- 1. Δp SMALL TO CONTAIN $P_{PUMPING}$ 2. Δp LARGE FOR ATOMIZATION, AND CONTROL OF COMBUSTION INSTABILITY
- 3. D_i from 30 to 800 μm (AFFECTS INSTABILITY)

6.8 INJECTION PLATE

6.9 COOLING SYSTEM

- ACTIVE METHODS: FORCED CONVECTION (COOLANT: FUEL)
- PASSIVE METHODS: RADIATION, THERMAL PROTECTIONS
- **1. REGENERATIVE (ACTIVE)**
- 2. FILM (ACTIVE)
- **3. RADIATION (PASSIVE)**

CRUCIAL SECTION: THROAT

6.10 COOLING FLUID: FUEL

- THRUST CHAMBER MADE UP OF HUNDREDS OF CHANNELS
- DUE TO STRONG THERMAL/MECHANICAL STRESS, A CRACK CAN OCCUR
- \rightarrow COOLANT SQUIRTS INTO CHAMBER
 - COMBUSTION PRODUCTS ARE <u>FUEL</u>-RICH
 - IF USING OXIDIZER AS A COOLANT, IT WILL REACT WITH EXCESS FUEL
- \rightarrow FURTHER REACTION \rightarrow HEAT RELEASE \rightarrow CRACK WIDENS
 - FURTHER, WALL MATERIAL (Cu) CAN BURN WITH OXYGEN
- \rightarrow USE <u>FUEL</u> AS A COOLANT

6.11 FEED SYSTEM

- <u>CRUCIAL</u> COMPONENT
- 1. PRESSURE–GAS:
 - ONLY APPLICABLE FOR LOW p_c (LARGE m_{tank}); OK FOR MULTIPLE IGNITIONS
- 2. TURBOPUMPS:
 - LIGHT; COMPLEX AND COSTLY, LIMITED no. IGNITIONS
- **3.** (ELECTRIC PUMPS):
 - FED BY CELLS; RECENTLY PROPOSED FOR UPPER STAGES AND SPACECRAFTS, MULTIPLE IGNITIONS

6.12 TANKS

- HIGH PRESSURE (20–40 MPa): PRESSURANT TANKS, USUALLY SPHERICAL
- MEAN PRESSURE (2–6 MPa): PROPELLANT TANKS IN PRESSURE–GAS SYST.
- LOW PRESSURE (0,1–0,6 MPa) PROPELLANT TANKS IN TURBOPUMP SYST.
- THERMAL INSULATION (CRYOGENIC PROPEL.

6.13 PRESSURE–GAS FEED SYSTEM

- TANKS UNDER PRESSURE (HEAVY)
- PRESSURANT:
 - AIR: CHEAP, BUT MAY REACT WITH FUEL
 - NITROGEN (N₂): INERT, BUT SOLUBLE IN O_2 , N_2O_4 (NTO)
 - HELIUM (He): INERT, LIGHT, COSTLY

6.15 TURBOPUMP FEED SYSTEM: OPTIONS

1. <u>OPEN CYCLE</u>: TURBINE GASES EXHAUSTED BY SEPARATE NOZZLE, OR RE-INJECTED INTO DIVERGENT

2. <u>CLOSED CYCLE</u>: TURBINE GASES RE–INJECTED INTO COMBUSTION CHAMBER

- TURBINE TEMPERATURE $\simeq 800 \div 900$ K (O/F VERY FAR FROM STOICHIOMETRIC)
- \bullet GAS–GENERATOR MASS FLOW 1–5% OF \dot{m}
- ALTERNATIVE: COMBUSTION GASES SPILL

6.17 TURBOPUMP ROTATIONAL SPEED

6.18 COMBUSTION INSTABILITY (COMBUSTION PRESSURE OSCILLATIONS

a. LONGITUDINAL MODES

b. TANGENTIAL MODES (STANDING or SPINNING

c. RADIAL MODES

• MAY LEAD TO CHAMBER FAILURE

Figure 1: 8th order

1st/2nd order

2nd order

Figure 2: Spinning tangential mode, 1st order.

6.19 EXPEDIENTS TO COUNTER COMBUSTION INSTABILITY IN *LRE*

- EMPIRICAL:
- HIGH INJECTOR Δp
- CAVITIES IN INJECTOR PLATE
- LINERS PERFORATED LINERS
- BAFFLES

- INSTABILITY ENHANCED BY HIGH p_c
- CRITICAL ISSUE: DISTANCE INJECTION PLATE-FLAME FRONT

6.20 COMPONENTS OF DEVELOPMENT COST OF A (VERY LARGE) LRE

• F-1 (1st STAGE SATURN V)

• IMPORTANT COMPONENT: SUPPRESSION COMBUSTION INSTABILITY

7.1 SOLID PROPELLANT MOTORS (SRM)

- PROS/CONS:
 - + SIMPLE
 - + STORABLE
 - + EASILY SCALABLE DESIGN
 - LOWER PERFORMANCE (u_{eff})
 - NON RE-IGNITABLE, NON THROTTLEABLE
- MAIN COMPONENTS:
 - COMBUSTION CHAMBER
 - PROPELLANT GRAIN
 - \circ **IGNITER**
 - NOZZLE
- USES: BOOSTERS, UPPER STAGES, TACTICAL MISSILES, GAS GENERATORS

7.2 SOLID PROPELLANTS

- DOUBLE BASE
- COMPOSITES

7.3 DOUBLE BASE PROPELLANTS

- NITROGLYICERIN ABSORBED ON NITROCELLULOSE
- SMOKELESS
- LOW COST, NON-TOXIC PRODUCTS
- LOW PERFORMANCE $(u_{eff} \simeq 2200 \text{ m/s, s/l})$
- LOW DENSITY ($\rho_p \simeq 1600 \text{ kg/m}^3$)
- HIGHLY DANGEROUS
- \rightarrow MILITARY APPLICATIONS

7.4 COMPOSITE PROPELLANTS

- OXIDIZERS:
 - $\text{AMMONIUM PERCHLORATE NH}_4\text{ClO}_4 \text{ (AP)}$
 - AMMONIUM NITRATE NH₄NO₃ (AN)
- FUELS:
 - BINDER: ASPHALT OR RUBBER
 * POLIBUTADIENE (HTPB, PBAN, ...), ASPHALTS, ...
 - -METAL POWDER ($\leq 20\%$):
 - * Al, Be (CARCINOGEN)

7.5 GRAIN REGRESSION VELOCITY

• DEPENDING UPON:

1. GRAIN COMPOSITION

- 2. CHAMBER PRESSURE $r = a p_c^n$
- **3. GRAIN INITIAL TEMPERATURE**
- 4. GAS VELOCITY (|| GRAIN)

7.6 EQUILIBRIUM CHAMBER PRESSURE

NOZZLE FLOW RATE: $\dot{m}_{out} = \Gamma \frac{p_c A_t}{\sqrt{RT_c}}$

FLOW RATE COMBUST. PRODUCTS: $\dot{m}_{in} = r \rho_p A$

AT EQUILIBRIUM: $\dot{m}_{in} = \dot{m}_{out} \Rightarrow$

$$p_c = \left(a\,c^*\,
ho_p\,K
ight)^{rac{1}{1-n}}$$

• $K = A_b/A_t$, 'KLEMMUNG' (RATIO BURNING AREA/THROAT AREA)

7.7 OPERATING POINT STABILITY

NOZZLE FLOW RATE: $\dot{m}_{out} \propto p_c$ COMBUSTION PRODUCTS FLOW RATE: $\dot{m}_{in} \propto p_c^n$

 $egin{aligned} \Delta p_c &> 0: & \Delta \dot{m}_{out} > \dot{m}_{in} \ \Delta p_c &< 0: & \Delta \dot{m}_{out} < \dot{m}_{in} \ n < 1 ext{ STABLE}, \end{aligned}$

 $\Delta \dot{m}_{out} < \dot{m}_{in} \ \Delta \dot{m}_{out} > \dot{m}_{in}$

n > 1 UNSTABLE

7.8 GRAIN GEOMETRY (1)

• CAST OR EXTRUDED

$$p_c = \left(a \, c^st \,
ho_p \, K
ight)^{rac{1}{1-n}}
onumber \ F(t) \ = \ F(0) \ \left[rac{A_b(t)}{A_b(0)}
ight]^{rac{1}{1-n}}$$

- PROGRESSIVE $dA_b/dt > 0$, F INCREASING
- NEUTRAL $dA_b/dt = 0$, F CONSTANT
- REGRESSIVE $dA_b/dt < 0$, F DECREASING
7.9 GRAIN GEOMETRY (2)

• TWO-DIMENSIONAL GRAINS - SIGARETTE BURNING (LOW K) - RADIAL BURNING (TUBULAR, STAR)

7.10 THERMAL PROTECTIONS

$7.12\ {\rm COMBUSTION}\ {\rm INSTABILITY}\ {\rm IN}\ {\rm SRMs}$

• LESS SERIOUS THAN IN LRES, AS:

- -VISCOELASTIC GRAIN;
- VISCOUS COUPLING WITH SOLID PARTICLES (particle diameter must be tailored to size)
- CHAMBER DIMENSION VARIES \rightarrow NATURAL *f*'s NOT CONSTANT
- NO FEED SYSTEM

8.1 STAGING

TANDEM PARALLEL

8.2 TANDEM STAGING

- STAGES AND SUBROCKETS
- $\bullet M\!R_i \,=\, m_{fi}/m_{0i}; \qquad \lambda_i \,=\, m_{pl,i}/m_{0i}$
- MR_i , λ_i RELATIVE TO SUBROCKETS
- u_{eff} and $\kappa_{s,i}$ RELATIVE TO STAGES
- ALSO CONTAINS FINAL ACCELERATION

8.3 PAYLOAD RATIO λ_i INDIVIDUAL SUBROCKET

$$\lambda_{i} = 1 - \frac{1 - MR_{i}}{1 - \kappa_{si}} = 1 - \frac{1 - \exp(-\Delta v_{i}/u_{eff,i})}{1 - \kappa_{si}}$$
(30)

VELOCITY INCREMENT OF

INDIVIDUAL SUBROCKET

$$MR_i = \lambda_i (1 - \kappa_{si}) + \kappa_{si}$$
(31)

$$\Delta v_i = -u_{eq,i} \log \left[\lambda_i \left(1 - \kappa_{si}\right) + \kappa_{si}\right] \quad (32)$$

8.4 VELOCITY INCREMENT AND PAYLOAD RATIO OF THE WHOLE LAUNCHER

$$\Delta v \; = \; \sum_{i=1}^N \Delta v_i \; = \; - \; \sum_{i=1}^N u_{e\!f\!f,i} \, \log \left[\lambda_i \left(1 \, - \, \kappa_{si}
ight) + \kappa_{si}
ight]$$

$$\lambda = \prod_{i=1}^{N} \lambda_i$$
(33)
(34)

$$\lambda = \frac{m_{pl}}{m_0} = \frac{m_{pl,3}}{m_{01}} = \frac{m_{pl,1}}{m_{01}} \frac{m_{pl,2}}{m_{02}} \frac{m_{pl,3}}{m_{03}}$$
(35)

8.5 PARTITIONING THE VELOCITY INCREMENT AMONG THE N SUBROCKETS

$$\Delta v_i = \frac{\Delta v}{N}$$
(36)

• STRICTLY VALID ONLY FOR $u_{eff,i}$ and $\kappa_{s,i}$ EQUAL FOR ALL STAGES

8.6 PAYLOAD RATIO AS A FUNCTION OF Δv PARTITIONING

8.7 LAUNCHER 'FAMILIES'

• NON–OPTIMAL Δv PARTITIONING

• BUT LOWER DEVELOPMENT COSTS

Heavy

8.8 TRADE–OFF BETWEEN DEVELOPMENT AND PRODUCTION COSTS

- A. MAX DEVELOPMENT COSTS, MIN. PRODUCTION COSTS
- **B. MIN. DEVELOPMENT COSTS, MAX PRODUCTION COSTS**
- C. INTERMEDIATE DEVELOPMENT AND PRODUCTION COS
- CHOICE DEPENDS OF no. UNITS TO BE BUILT Generic Solid-Propellant Launch Vehicle Configurations

8.9 MINIMIZING LAUNCHER COST

- HIGHER INITIAL ACCELERATION \rightarrow LOWER GRAVITATIONAL LOSSES
- BUT ENGINE MASS INCREASES (VERY COSTLY)

• N LIMITED BY COSTS, RELIABILITY • N HIGHER FOR HIGH- Δv MISSIONS; HIGH u_{eff} ALSO INDICATED

8.11 HEAT SHIELD (or FAIRING) JETTISON

• PROTECTING PAYLOAD FROM THERMAL AND DYNAMIC STRESSES

- \bullet RELEASED AROUND 80 100 km ALTITUDE
- FURTHER, JETTISON OF INTERSTAGES

8.12 PROPELLANT CONTINGENCIES

• LIQUID PROPELLANTS:

* UP TO A 3-4% TRAPPED IN FEED LINES * 1% UNUSABLE (NON-NOMINAL O/F RATIOS) * 0.8% RESERVE

• SOLID PROPELLANTS:

* 1% UNBURNT RESIDUAL (SLIVER)

* 0.8% RESERVE

8.13 λ FOR LEO MISSIONS UNDER DIFFERENT PROPULSIVE ASSUMPTIONS

Effect of staging, $\Delta V = 9500$ m/s

• (λ QUITE OPTIMISTIC DUE TO NEGLECTED EFFECTS)

8.14 λ FOR GEO MISSIONS UNDER DIFFERENT PROPULSIVE ASSUMPTION

Effect of staging, $\Delta V = 13500$ m/s

