ENVIRONMENTAL IMPACT OF AIRCRAFT ENGINES D. Lentini, a.a. 2018/19 1. INTRODUCTION

- TEXTBOOK:
- LECTURE NOTES 2018/19 (in Italian)
- PRESENTATION 2018/19 (in English)
- ightarrow dma.dima.uniroma1.it:8080/STAFF2/lentini.html (under Lecture Notes)
- \rightarrow or site CAD Aerospaziale
 - diego.lentini@uniroma1.it, tel. 0644585281
 - REGISTER ON THE LIST

	Monday	11:00-	-12:00	hall 10
LECTURES:	Tuesday	08:30-	-10:00	hall 10
	Friday	08:30-	-10:00	hall 16
OFFICE HOUDS.	Tuesday	11 16	, Dip	. Ing. Mecc. Aerosp.
[check website]	Friday	14-10 14-16)	Area Propulsione
)	(cloister)

- EXAM: <u>WRITTEN TEST</u> (QUESTIONS LISTED ON WEBSITE) + <u>DISCUSSION</u>
- <u>REVIEW</u>: AEROSPACE PROPULSION

1.2 EMISSIONS

• CHEMICAL:

- POLLUTANTS: NO_x, SO_x, soot, CO, UHC (Unburned HydroCarbons)

 CONTAMINANTS: CO₂, N₂O, H₂O
 AVIATION SHARE OF GLOBAL FUEL CON-SUMPTION ONLY 3,5% (THOUGH ON THE RISE), BUT... AIRCRAFTS FLY AT HIGH ALTITUDE

Figure 1: Contributors to CO_2 emissions.

• NOISE:

- FROM ENGINES
- FROM AIRFRAME
 - $(\rightarrow$ course title somewhat restrictive)

1.3 ALTITUDE DISTRIBUTION

Figure 2: Altitude distribution of aircraft fuel burn and emissions.

1.4 EMISSION STANDARDS

1. INITIALLY ENFORCED BY FAA IN USA (FAR), JAA IN EUROPE, THEN MERGED IN ANNEX 16 OF ICAO STANDARDS

2. FURTHER, LOCAL RESTRICTIONS

- 3. STANDARDS INCREASINGLY STRINGENT AS YEARS GO BY
- 4. ARE GAINING THE ROLE OF CONTROL-LING FACTORS IN THE DEVELOPMENT OF NEW ENGINES AND AIRCRAFTS
- 5. ECONOMIC CONCERN TOO (e.g., AIRPORT NIGHT CURFEW, LOCAL TAXES)

Figure 3: Standard positions for noise measurement.

Figure 4: Noise limits, ICAO Annex 16, Chap. 3 (1977); Chap. 4 (2006): sum three contributions must be 10 dB lower than Chap. 3; Chap. 14 (2018): additional 7 dB lower than Chap. 4.

1.6 HISTORICAL NOISE STANDARDS

1.7 NO_x (NITROGEN OXIDES) STANDARDS

- D_p grams POLLUTANT EMITTED PER LANDING TAKE-OFF (LTO) CYCLE
- F_{00} STATIC THRUST (kN)

$$rac{D_p}{F_{00}} = \left\{ egin{array}{cccccc} 16.72 \ + \ 1.408 \ \cdot \ OPR & \mathrm{per} & OPR \leq 30 \ -1.04 \ + \ 2 & \cdot \ OPR & \mathrm{per} & 30 < OPR \leq 82.6 \ 32 \ + \ 1.6 \ \cdot \ OPR & \mathrm{per} & OPR > 82.6 \end{array}
ight.$$

Figure 5: Limits on NO_x emissions per LTO cycle vs. OPR.

1.8 TSFC & NO_x EMISSIONS vs. OPR

Figure 6: Andamenti del consumo specifico di spinta e dell'indice di emissione di NO_x , in funzione del rapporto di compressione globale OPR.

1.9 CORSIA CARBON OFFSETTING and REDUCTION SCHEME for INTERNATIONAL AVIATION

- TO BE INTRODUCED IN 2021
- DESPITE REDUCTION *TSFC*, AVIATION CO₂ EMISSIONS INCREASE DUE TO EXPANSION AIR TRAVEL (~ 5% per year)
- GOAL: STABILIZE AVIATION CO₂ EMISSION AT 2020 LEVEL BY *TRADING* EMISSION QUOTA
- 'CAP AND TRADE' SYSTEM
- CURRENTLY ~ 20 ϵ per ton CO₂

1.10 HISTORICAL TREND OF SPECIFIC CONSUMPTION

Figure 7: Historical trend of fuel consumption per unit thrust, and *per* pax-km.

1.11 HISTORICAL TREND OF ENERGY INTENSITY

Figure 8: Historical trend of energy consumption per unit thrust, and *per* pax-km.

1.12 HISTORICAL TREND OF PERCEIVED NOISE

Figure 9: Historical trend of noise from commercial aircrafts, perceived on the ground.

1.13 NOISE EMISSIONS AND STANDARDS

Figure 10: Noise emissions by commercial aircrafts, and ICAO standards in time.

Figure 11: Emissioni di ossidi di azoto da aerei commerciali e normative ICAO nel tempo.

1.15 ACARE TARGETS 'VISION 2020' (2001)

- Advisory Council for Aerospace Research in Europe
 - * 50% REDUCTION CO_2
 - * 80% REDUCTION NO_x
 - * HALVE NOISE
 - * ELIMINATE NOISE DISTURBANCE AWAY FROM AIRPORTS
 - SUBSTANTIALLY CUT OPERATING COSTS
 - REDUCE ACCIDENT RATE BY A FACTOR 5
 - DRASTICALLY REDUCE IMPACT OF HUMAN ERRORS
 - ENSURE 99% FLIGHTS NOT DELAYED > 15 min
 - NEW STANDARDS QUALITY AND EFFICIENCY
 - -HALVE TIME-TO-MARKET
 - IMPROVE SINERGIES BETWEEN MILITARY AND CIVIL RESEARCH
- FOR EMISSIONS, THESE GOALS IMPLY DOUBLING HISTORICAL IMPROVEMENT RATE

1.16 SIMILAR TARGETS

• Global Aviation Sector (ICAO et al.)

- IMPROVE CO₂ EFFICIENCY 1.5% PER YEAR UP TO 2020;
- STABILIZE NET CO₂ EMISSIONS BY 2020;
- REDUCE 50% NET CO₂ EMISSIONS BY 2050 (w.r.t. 2005)

• 'CLEEN' TARGETS (USA):

	N+1 (2015)	N+2 (2020-25)	N+3 (2030-35)
	CONVENTIONAL	UNCONVENTIONAL	ADVANCED
	CONFIGURATION	CONFIGURATION	CONCEPTS
	RELATIVE TO 1998	RELATIVE TO 1998	RELATIVE TO 2005
NOISE	-32 dB	-42 dB	-71 dB
	cum below Stage 4	cum below Stage 4	cum below Stage 4
LTO NOX EMISSIONS (BELOW CAEP 6)	-60%	-75%	better than -75%
AIRCRAFT FUEL BURN	-33%	-50%	better than -70%

1.17 EUROPEAN TARGETS 2050 vs. 2020

• REFERRED TO YEAR 2000 TECHNOLOGY

ITEM	2020 TARGET	2050 TARGET
\mathbf{CO}_2 EMIS.	-50%	-75%
NO_{x} EMIS.	-80%	-90%
NOISE EMIS.	-50%	-65%
ΜΑΤΕΡΙΑΙς		FULLY
MALLALS		RECYCLABLE

1.18 ACHIEVING THE GOALS EXAMPLE: CO_2

- GOAL: 50% REDUCTION CO₂
 - -20% FROM ENGINES (REDUCTION TSFC)
 - 20% FROM AERODYNAMICS
 - -10% FROM AIR TRAFFIC CONTROL
 - $-? \text{ WEIGHT REDUCTION} \rightarrow \text{THRUST}$ (MATERIALS, STRUCTURES)
- ACHIEVING SUCH GOALS ACCORDINGLY REQUIRES MULTIDISCIPLINARY R&D (RESEARCH AND DEVELOPMENT)
- \rightarrow ONLY A FEW VERY LARGE COMPANIES (AIRCRAFT/ENGINES MAKERS) CAN SUCCEED
 - HOWEVER, AIR TRAFFIC IS EXPECTED TO TRIPLE BY 2020... (w.r.t. 2001)

1.19 e.g., HEAVY, LONG–RANGE AIRCRAFT MANUFACTURES

LATE 50s TO MID–70s	NOWDAYS
BOEING	BOEING
DOUGLAS LOCKHEED CONVAIR	
VICKERS DE HAVILLAND	AIRBUS
ILYUSHIN	

1.20 COMMERCIAL AEROENGINES MARKET SHARE

\mathbf{CFM}	GENERAL ELECTRIC + SNECMA (FR)
INTERN AERO ENGS	PRATT & WHITNEY + MTU (GER)
	+ JAPAN AERO ENG + (ROLLS-ROYCE)
ENGINE ALLIANCE	GENERAL ELECTRIC
	+ PRATT & WHITNEY
GENERAL ELECTRIC	(USA)
ROLLS-ROYCE	(UK)
PRATT & WHITHEY	(USA)

1.21 GUIDELINES FOR REDUCING FUEL CONSUMPTION per pax-km (THEN COSTS, EMISSIONS)

1. REDUCING ENGINE TSFC

2. IMPROVING AERODYNAMIC EFFICIENCY L/D

3. AIR TRAFFIC MANAGEMENT

4. CONSTRUCTION AND MATERIALS

5. OTHER MINOR STEPS

1.21.1 REDUCING ENGINE TSFC

- GEARED TURBOFAN (GTF) POSSIBLY UP TO $BPR \sim 20$
- OPEN ROTOR or PROPFAN UP TO $BPR \sim 50$ (NOISY)
- HIGHER CYCLE PRESSURE RATIO p_3/p_a (HEAVIER)
- INTERCOOLED/RECUPERATED ENGINES (HEAVY, BULKY \rightarrow DRAG) _{PW1100G}

1.21.2 IMPROVING AERODYNAMIC EFFICIENCY L/D

• WINGLETS

• BOUNDARY LAYER INGESTION

• BLENDED WING–BODY

1.21.2' IMPROVING AERODYNAMIC EFFICIENCY L/D

• SHARKLETS

• RAKED WINGTIPS

REDUCING INDUCED DRAG

Airbus 350 sharklets

Boeing 787 raked wingtips Mother Nature

1.21.3 AIR TRAFFIC MANAGEMENT

• FLIGHT EFFICIENCY PLAN

- 4–D (TIME–VARYING) AIRLANES (METEO, WINDS)
- STEP-CLIMB, CONTINUOUS CLIMB IN CRUISE
- CONTINUOUS DESCENT

Figure 12: Old and new, shorter routes in Northern Italy.

1.21.4 CONSTRUCTION AND MATERIALS

• COMPOSITES

• MULTIFUSELAGE, BWB CONFIGURATIONS

Figure 13: (Top) materials used in the Boeing 787, (left) multifuselage configuration, (right) blended wing-body configuration.

1.21.5 OTHER MINOR STEPS

• ELECTRIC TAXIING

1.22 OPTIMIZATION

- ACHIEVING <u>INDIVIDUAL</u> EMISSION REDUC-TION GOALS RELATIVELY EASY...
- BUT TROUBLE IS THAT THEY MUST <u>ALL</u> BE ACHIEVED SIMULTANEOUSLY
- \rightarrow OVERALL DESIGN OPTIMIZATION
 - <u>WHAT</u> OPTIMIZE (DOC, RETURN ON IN-VESTEMENT...)? AND ON THE BASIS OF <u>WHICH</u> FUEL PRICE?
 - OPTIMIZATION WITH CONSTRAINTS (NO. CONSTRAINTS CAN EXCEED NO. DE-SIGN VARIABLES)

1.23 OPTIMIZING INDIVIDUAL ASPECTS

Figure 14: (Not to be taken too seriously)...

1.24 AVERAGE LIFE OF COMMERCIAL AIRCRAFT

1.25 POSSIBLE ANSWER: UNCONVENTIONAL CONFIGURATIONS

Figure 15: Over the Wing Nacelle configuration.

Figure 16: Rear Fuselage Nacelle configuration.

1.26 ENGINE LOCATION: PROS AND CONS

WING-MOUNTED	REAR-MOUNTED
(OWN or UWN)	
WING BENDING RELIEF	HIGHER GROUND CLEARANCE
FUSELAGE BEND. RELIEF	(ONLY OPTION $A/C < 50$ pax)
\rightarrow LIGHTER	BETTER WING AERODYNAMICS
HIGHER CABIN NOISE	LONGER FUEL LINES
	CENTRE-of-GRAVITY MORE AFT
	\rightarrow LOWER TAIL ARM
	\rightarrow TIP–OVER
	LOWER YAW for ENGINE OUT
	\rightarrow SMALLER FINTAIL, RUDDER
	(LOWER WEIGHT/DRAG)
	\rightarrow SAFER EMERGENCY LANDING
	HOT DEBRIS in CRASH LANDING

1.27 WING-MOUNTED vs. REAR-MOUNTED

1.28 ... OR EVEN LESS CONVENTIONAL CONFIGURATIONS

Figure 17: Twin–fuselage configuration.

Figure 18: Time cash flow for the development a 150–seat aircraft (top), and for a large aircraft (bottom), both of conventional type.

• AIRBUS 380 REQUIRED AN INVESTMENT $\sim 15-25~{\rm Geuro}$

1.30 IN ORDER TO AVOID RISKS...

Figure 19: Comparison between the shapes of Boeing 707 and Airbus 340.

1.32 ECONOMICAL IMPACT OF EMISSION REDUCTION

• EMISSION REDUCTION OFTEN IMPLIES:

- INCREASED SPECIFIC CONSUMPTION $TSFC = \dot{m}_f/F$

- INCREASED ENGINE MASS m_e

• TAXES

	1.33 ECONOMICAL IMPACT OF INCREASED $TSFC$ (1)					
			A340-500)		
		range (nm/km)	7050/130	57		
n	n_f/m_{TO}	${ m fuel}\;{ m mass}/m_{TO}$	$0,\!423$			
n	n_{pl}/m_{TO}	payload mass $/m_{TO}$	$0,\!141$			

• RELATIVE REDUCTION m_{pl} (\simeq COST IN-CREASE) DUE TO RELATIVE INCREASE OF TSFC:

$$^{st} \Delta m_{pl} \, = \, - \Delta m_{f}$$

$_{*} \Delta m_{pl}$.	$_$ $_$ Δm_f m_f $_$	$\Delta m_f \ m_f/m_{TO}$
m_{pl}	$=-rac{1}{m_f}rac{1}{m_{pl}}$	$\overline{} \overline{m_{f}} \overline{m_{pl}/m_{TO}}$

* e.g., A340–500, TSFC INCREASED BY 1%:

$$rac{\Delta m_{pl}}{m_{pl}} = \, -\, 0, 01 \, rac{0,423}{0,141} = \, -\, 3\%$$

• PLUS COST EXTRA FUEL

• FUEL SHARE OF OPERATING COSTS CUR-RENTLY AROUND 23.5%

• 1% INCREASE FUEL BURN $\simeq 0,235\%$ IN-CREASE OPERATING COSTS

• RELATIVE INCREASE OPERATING COST PER UNIT PAYLOAD MASS $\simeq 3,3 \%$ $\frac{1,00235}{1-0,03} \simeq 1,033$ (1)

1.35 BREAKDOWN OF AIRLINE COSTS

- MRO MAINTENANCE RELATED OPERATIONS
- (INDICATIVE)

42

1.37 COURSE PROGRAMME (1/2)

1. INTRODUCTION

- 2. POLLUTANTS AND CONTAMINANTS
 - DIRECT EFFECTS
 - GLOBAL WARMING (GREENHOUSE EFFECT)
 - DEPLETION OF STRATOSPHERIC OZONE LAYER
- **3. COMBUSTION CHAMBER:**
 - BASIC ASPECTS: DIFFUSERS, INJECTORS, COOLING
 - FUNDAMENTALS OF COMBUSTION
 - COMBUSTION EFFICIENCY
 - FUELS

4. POLLUTANT FORMATION/EMISSION CONTROL:

- CONTROL STRATEGIES
- PRIMARY AND SECONDARY PARTICULATE, VOC (+ Lab)
- SO_x
- NO_x
- CO, UHC

1.38 COURSE PROGRAMME (2/2)

- **5 ELEMENTS OF ACOUSTICS:**
 - ACOUSTIC QUANTITIES
 - WAVE EQ.
 - SOUND MEASUREMENT
 - ATTENUATION
- 6 NOISE EMISSIONS:
 - ACTIONS AGAINST NOISE
 - COMPONENTS OF NOISE:
 - PROPULSIVE
 - NON-PROPULSIVE
- 7 EMISSIONS BY SUPERSONIC AIRCRAFTS
- **8 UNCONVENTIONAL CONFIGURATIONS**

2.1 POLLUTANTS AND CONTAMINANTS

- AGENTS:
 - POLLUTANTS (DIRECT EFFECT ON HEALTH)
 - CONTAMINANTS (CAN ALTER CLIMATE)
- POLLUTANTS:
 - PRIMARY
 - SECONDARY
- SCALES:
 - -LOCAL
 - REGIONAL
 - GLOBAL

2.2 INTERRELATION EMISSIONS/ATMOSPHERE/EFFECTS

- EMISSION SOURCES
- \rightarrow **ATMOSPHERE:**
 - TRANSPORT
 - DILUTION
 - SECONDARY REACTIONS
 - REMOVAL BY NATURAL MECHANISMS

$\rightarrow \mathbf{RECEPTORS} \ \rightarrow \ \mathbf{EFFECTS}$

2.3 MEASUREMENT CRITERIA FOR THE CONCENTRATION OF GASEOUS POLLUTANTS

• CONCENTRATIONS:

- -<u>MOLAR FRACTION</u> (=VOLUME) $X_i = n_i/n$
- ppm (parts per 10⁶), ppb (parts per 10⁹), ppt (parts per 10¹²)
- SOMETIMES INDICATED AS ppmv (VOLUME), .
- OFTEN REFERRED TO DRY MIXTURE (dry basis) ppmvd
- MOLAR MASS (OR MOLECULAR WEIGHT) OF A MIXTURE OF N CHEMICAL SPECIES

$$\mathcal{M} \ = \ \sum_{i=1}^N X_i \, \mathcal{M}_i$$

- $rac{\mathrm{MASS \ FRACTIONS}}{\mathrm{RECOVERED \ AS \ } Y_i} \; = \; m_i/m \; \mathrm{CAN \ BE} \ \mathbf{ECOVERED \ AS \ } Y_i \; = \; X_i \, \mathcal{M}_i/\mathcal{M}$
- CONCENTRATIONS OF LIQUIDS AND SOLIDS ALWAYS EXPRESSED IN MASS TERMS
- FOR SOLID/LIQUID/GASEOUS POLLUTANTS IN ATMOSPHERE, ALSO CONCENTRATION IN MASS PER UNIT VOLUME $c_i = m_i/V$ $(\mu g/m^3)$

2.4 EMISSION INDICES

- $EINO_x = g NO_x EMITTED PER kg FUEL BURNED$
- $EISO_x = g SO_x EMITTED PER kg FUEL BURNED$
- EICO = g CO EMITTED PER kg FUEL BURNED
- EIUHC = g UHC EMITTED PER kg FUEL BURNED
- EIPM = g PM (*Particulate Matter = soot*) EMITTED PER kg FUEL BURNED

2.5 TYPICAL VALUES OF EMISSION INDICES

- VALUES AVERAGED OVER THE WHOLE WORLD AIR FLEET: $EINO_x = 13.2 \text{ g/kg}_f, EICO = 3.25 \text{ g/kg}_f,$ $EIUHC = 0.4 \text{ g/kg}_f, EIPM = 0.025 \text{ g/kg}_f$
- FOR A GIVEN ENGINE, THEY DEPEND ON OPERATING CONDITIONS, e.g., CFM56–5C3:

1	POWER	TIME	FUEL FLOW kg/s	ENISSIONS INDICES (g/kg)		
NODE	SETTING (%Foo)			HC	C0	NO,
TAKE-OFF	100	0.7	1.373	0.008	0.98	34.7
CLIMB OUT	85	2.2	1.131	0.008	0.82	27.1
APPROACH	30	4.0	0.370	0.074	1.57	10.4
IDLE	7	26.0	0.1203	5.35	32.6	4.26

2.6 EMISSIONS PER LTO CYCLE (LANDING/TAKE-OFF)

• EMISSIONS PER LTO CYCLE, e.g., NO_x (*n* NO. ENGINES, e.g., 2):

$$m_{
m NO_x, LTO} \ = \ n \, \cdot \, \sum_{i=1}^4 \Delta t_i \, \dot{m}_{f,i} \, EINO_{
m x,i} \, / \, 1000$$

	POMER SETTING (%F ₀₀)	TIME	FUEL FLOW kg/s	ENISSIONS INDICES (g/kg)		
NODE				HC	C0	NO,
TAKE-OFF	100	0.7	1.373	0.008	0.98	34.7
CLIMB OUT	85	2.2	1.131	0.008	0.82	27.1
APPROACH	30	4.0	0.370	0.074	1.57	10.4
IDLE	7	26.0	0.1203	5.35	32.6	4.26

	TAKE OFF	CLIMB	APPR.	IDLE	TOTAL
UHC	0,001	0,002	0,013	2,008	2,025
\mathbf{CO}	$0,\!113$	$0,\!244$	0,779	$12,\!236$	$12,\!873$
\mathbf{NO}_{x}	$4,\!002$	8,092	$1,\!847$	$1,\!599$	$15,\!540$

2.7 UNITS OF MEASUREMENT

- SI (SYSTÈME INTERNATIONAL) UNITS:
 - LENGTH m, MASS kg, TIME s, TEMPERATURE K, KILOMOLE kmol
 - $-T({
 m K}) = T(^{
 m o}{
 m C}) + 273{,}15$
 - ENERGY JOULE J (1 kWh = 3,6 MJ; 1 cal = 4,186 J; 1 kcal = 1 Cal = 4186 J; 1 BTU = 1055 J)
 - $\begin{array}{l} \ \mathrm{POWER} \ \mathrm{WATT} \ \mathrm{W} \ (1 \ \mathrm{CV} = 735, 5 \ \mathrm{W}; \\ 1 \ \mathrm{HP} = 746 \ \mathrm{W}; \ 1 \ \mathrm{BTU/h} = 0, 293 \ \mathrm{W}) \end{array}$
 - PRESSURE PASCAL Pa (1 atm = 101325 Pa)

• MULTIPLES/SUBMULTIPLES:

- $egin{aligned} -\,\mathrm{kilo}\,\,(\mathrm{k})\,&=\,10^3,\,\,\mathrm{mega}\,\,(\mathrm{M})\,&=\,10^6,\,\,\mathrm{giga}\,\,(\mathrm{G})\,&=\,\ 10^9,\,\,\mathrm{tera}\,\,(\mathrm{T})\,&=\,10^{12},\,\,\mathrm{peta}\,\,(\mathrm{P})\,&=\,10^{15},\,\,\mathrm{exa}\,\,(\mathrm{E})\ &=\,10^{18},\,\,\mathrm{zetta}\,\,(\mathrm{Z})\,&=\,10^{21},\,\,\mathrm{yotta}\,\,(\mathrm{Y})\,&=\,10^{24} \end{aligned}$
- $egin{aligned} &- ext{milli} \ (ext{m}) = 10^{-3}, \ ext{micro} \ (\mu) = 10^{-6}, \ ext{nano} \ (ext{n}) \ &= 10^{-9}, \ ext{pico} \ (ext{p}) = 10^{-12}, \ ext{femto} \ (ext{f}) = 10^{-15}, \ ext{atto} \ (ext{a}) = 10^{-18}, \ ext{zepto} \ (ext{z}) = 10^{-21}, \ ext{yocto} \ (ext{y}) \ &= 10^{-24} \end{aligned}$

2.8 MAIN ATMOSPHERIC POLLUTANTS AND CONTAMINANTS

- PARTICULATE
- VOLATILE ORGANIC COMPOUNDS (VOC) AND UHC (UNBURNED HYDROCARBONS)
- OZONE O₃ (AT GROUND LEVEL)
- SULFUR OXIDES SO_x
- NITROGEN OXIDES NO_x
- CARBON MONOXIDE
- LEAD Pb, ARSENIC As
- ...
- CARBON DIOXIDE CO₂
- METHANE CH₄
- NITROUS OXIDE N₂O
- (WATER H_2O)

2.9.1 EFFECTS OF ATMOSPHERIC POLLUTANTS

- EFFECTS ON HUMANS
- EFFECTS ON ANIMALS
- EFFECTS ON PLANTS
- EFFECTS ON MATERIALS
- EFFECTS ON THE ENVIRONMENT

2.9.2 EFFECTS ON HUMANS

- EVALUATED FROM:
 - EPIDEMIOLOGICAL STUDIES
 - STUDIES ON ANIMALS
 - EXPERIMENTS ON VOLUNTEERS
 - CELL CULTURE IN VITRO AND IN VIVO
- POSSIBLE PRESENCE OF A *THRESHOLD*

• GLOBAL ESTIMATE:

 $\sim 8\ 000$ PREMATURE DEATHS PER YEAR DUE TO A/C EMISSIONS

• TO BE COMPARED TO:

- $\sim~470000~{
 m DUE}~{
 m TO}~{
 m GROUND-LEVEL}~{
 m OZONE}$
- $\sim 2\,100\,000$ DUE TO PARTICULATE
- $\sim~300\,000$ to $5\,000\,000$ DUE TO GLOBAL WARMING

• AND...

NUMBER OF FATALTIES

2.9.3 EFFECTS ON ANIMALS

• PARTLY SIMILAR TO THOSE ON HUMANS

• EFFECT OF UV RADIATION ON PLANKTON

2.9.4 EFFECTS ON PLANTS

• EXAMPLE: EFFECT SO₂ ON ALFALFA • EFFECT NO₂ ↓

Figure 20: Threshold curves for the manifestation of effects on plants, as a function of NO_2 concentration and duration of exposure.

2.9.5 EFFECTS ON MATERIALS

• EFFECT O₃ ON TYRES

• EFFECT SO₂ ON STEEL

Figure 21: Weight loss of a steel panel as a function of SO_2 concentration, with duration of exposure as a parameter.

2.9.6 EFFECTS ON THE ENVIRONMENT

- SMOG (VISIBILITY)
- ACID RAINS
- GLOBAL WARMING (GREENHOUSE EFFECT)
- DEPLETION OF OZONE LAYER

Figure 22: Interaction of photons with particles suspended in the atmosphere.

2.9.7 EFFECTS OF PARTICULATE

- PRIMARY (RELEASED BY COMBUSTION) AND SECONDARY (FORMED IN ATMOSPHERE DUE TO VOC, UHC, NO_x, SO_x)
- FINE PARTICLES CAN REACH DEEPLY INTO THE LUNGS
- LONDON DECEMBER 1952, ABOUT 4000 DEAD
- 100 μ g/m³ INCREASE PARTICULATE CONCENTRN \rightarrow 6% INCREASE MORTALITY
- ALZHEIMER? (POSSIBLY 21% OF ALL CASES)
- VISIBILITY, GLOBAL WARMING

Figure 23: Daily mortality rate and particulate/ SO_2 concentration for the pollution incident in London in December 1952.

2.9.8 EFFECTS OF SO_x

- ACID RAINS (LARGEST CONTRIBUTOR)
- IRRITANT
- EFFECTS ON CULTIVATIONS
- PROMOTES FORMATION OF SECONDARY PARTICULATE
- COUNTERACTS GLOBAL WARMING

2.9.9 EFFECTS OF NO_x

- ACID RAINS (25 30% OF TOTAL)
- NO₂ RESPIRATORY IRRITANT (~ 1 ppb IN UNPOLLUTED AIR)
- EFFECTS ON CULTIVATIONS
- PROMOTES FORMATION OF SECONDARY PARTICULATE
- PROMOTES FORMATION OF GROUND-LEVEL O₃ IN THE PRESENCE OF HC, IRRITANT
- PROMOTES DESTRUCTION OF STRATOSPHERIC O₃ (BUT CFCs MUCH MORE HARMFUL)
- N₂O POWERFUL GREENHOUSE GAS

2.9.10 EFFECTS OF CO

- VERY STRONG AFFINITY FOR HEMOGLOBIN (220 TIMES > OXYGEN), FORMING CARBOXY-HEMOGLOBIN COHb
- CAN ALREADY BE FATAL FOR $X_{CO} = 0.02\%$
- CURRENTLY $X_{CO} = 120$ ppb N HEMISPHERE, 50 - 60 ppb S (SHORT MEAN LIFE, 0.2 a)

 $\%~{
m Hb}$

CONVERTED

TO COHb EFFECTS

$0,\!3-0,\!7$	PHYSIOLOGICAL LEVEL FOR NONSMOKERS
2,5-3	CARDIAC FUNCTION DECREMENTS IN IMPAIRED INDIVIDUALS,
	BLOOD FLOW ALTERATIONS, CHANGES RED BLOOD CELL CONC.
4-6	VISUAL IMPAIRMENTS, VIGILANCE DECREMENTS,
	REDUCED MAX WORK CAPACITY
3 - 8	ROUTINE VALUES IN SMOKERS
${\bf 10-20}$	HEADACHE, LASSITUDE, BREATHLESSNESS, DILATATION SKIN
	BLOOD CELLS, ABNORMAL VISION, POTENTIAL DAMAGE TO FETUS
20 - 30	SEVERE HEADACHE, NAUSEA, ABNORMAL MANUAL DEXTERITY
30 - 40	WEAKNESS, NAUSEA, VOMITING, DIMNESS OF VISION,
	SEVERE HEADACHE, IRRITABILITY, IMPAIRED JUDGMENT
50-60	FAINTING, CONVULSIONS, COMA
60 - 70	COMA, DEPRESSED CARDIAC ACTIVITY AND RESPIRATION,
	SOMETIMES FATAL
> 70	FATAL

2.9.11 MEAN LIFE IN ATMOSPHERE OF POLLUTANTS AND CONTAMINANTS

• au RELATED TO NATURAL REMOVAL MECHANISMS

 $egin{aligned} d(X-X_{eq}) \propto & -(X-X_{eq}) \, dt \ & = & -(X-X_{eq}) rac{dt}{ au} \end{aligned}$

 $X(t) ~-~ X_{eq} ~=~ (X^* - X_{eq}) ~ \exp{(\, - t/ au)}$

CHEMICAL	PRE-INDUSTR	CURRENT	MEAN	% VARIATN
SPECIES	CONCENTRN	CONCENTRN	\mathbf{LIFE}	DUE TO
	ppb	ppb	а	COMBUST
CARBON DIOXIDE CO ₂	278000	411000	120	> 90
$METHANE \ CH_4$	700	1868	14	10
NITROUS OXIDE N_2O	270	330	120	20
$CFC-11 \ CFCl_3$	0	0,232	50	0
$CFC-12 \ CF_2Cl_2$	0	$0,\!516$	102	0
CARBON MONOXIDE CO	60	120 (N EMISPH)	0,2	> 90
TROPOSPHERIC NO_x	?	10-1000	< 0,03	> 50
NON–METHANE HCs	?	?	0 - 0,24	•••
STRATOSPHERIC WATER H	$_{2}O$ 3500	5500	~2	10
TROPOSPHERIC OZONE O ₃	25	34	< 0,1	> 50
STRATOSPHERIC OZONE O ₃	4000	3800	~ 2	< 5
SULPHUR DIOXIDE SO_2	?	> ?	•••	> 90
SOOT C	?	> ?	f(D,z)	> 90

2.11 WEATHER CONDITIONS

• POLLUTANT DISPERSION AFFECTED BY:

- VERTICAL TEMPERATURE GRADIENT

- WIND SPEED AND DIRECTION

- ATMOSPHERIC TURBULENCE

2.12.1 GLOBAL WARMING (GREENHOUSE EFFECT)

- CAUSES:
 - GREENHOUSE GASES (GHGs)
 - AIRCRAFT CONTRAILS (CONDENSATION TRAILS)
 - CARBON BLACK (SOOT)

2.12.2 EFFECTS OF GLOBAL WARMING

- DESTRUCTION OF ECOSYSTEMS (e.g., CORAL REEF), REDUCTION BIODIVERSITY
- PROLIFERATION WEEDS AND INSECTS NOXIOUS TO CULTIVATIONS
- \bullet PROLIFERATION MOSQUITOES \rightarrow DISEASES
- REDUCTION GROWTH PHYTOPLANKTON AND ALGAE
- DESERTIFICATION
- INCREASED OCCURRENCE OF EXTREME WEATHER CONDITIONS
- MELTING POLAR CAPS AND GLACIERS
- RELEASE CH₄ DUE TO MELTING TUNDRA
- FLOODING COASTAL AREAS (ALSO DUE TO THERMAL DILATATION OF OCEANS)
- POSSIBLE EFFECT ON GULF STREAM, EL NIÑO, LA NIÑA
- ullet INCREASED AGRICULTURE YIELDS (IF $\Delta T < 2$ K
- (OCEAN ACIDIFICATION)

2.12.3 EFFECT ON FREQUENCY OF EXTREME WEATHER

Figure 24: Increased yearly probability of occurrence of very hot days after a small increase of average temperature.

- ABOUT 60 000 DEATHS/YEAR DUE TO WEATHER-RELATED NATURAL DISASTERS
- MORE THAN TRIPLED w.r.t. 1960s

2.13.1 GREENHOUSE GASES

- GHGs: CO₂ (~ 77%), CH₄ (~ 14%), N₂O (~ 8%), CFC (~ 1%), (H₂O)
- CAUSE GLOBAL WARMING (0,74 K IN 20th CENT.; 1,1 TO 6,4 K ANTICIPATED IN 21st)
- $X_{{
 m CO}_2}=278~{
 m ppm}~{
 m IN}~{
 m PRE-INDUSTRIAL}~{
 m AGE},$ CURRENTLY $\sim 411~{
 m ppm};~{
 m GROWTH}~{
 m CONTINUES}...$

Figure 25: Anticipated CO₂ concentration and temperature rise for different scenarios.

• LONG CO₂ MEAN LIFE \rightarrow EVEN HALTING GHGs EMISSIONS NOW, WARMING WOULD LAST FOR CENTURIES (e.g., +0.6 K in 21st CENT.)

2.13.2 CONTRIBUTION OF DIFFERENT GHGs

Figure 26: Contribution of the different greenhouses gases to global warming.

2.13.3 CO₂ GROWTH RATE

2.13.4 GHG EMISSION SOURCES

Figure 28: CO_2 concentration and mean temperature in the past 400000 years.

Figure 29: CO_2 solubility in water as a function of temperature.

- OCEANS HEAT UP/COOL DOWN MUCH MORE SLOWLY THAN ATMOSPHERE OWING TO MUCH LARGER THERMAL INERTIA
- SUBSEQUENT CO₂ RELEASE/ABSORPTION
 - $-m_{atm}\simeq~~5~000~{
 m Tt},~c_p\simeq 1~{
 m kJ}~/~({
 m kg~K})$
 - $-m_{oce} \simeq 1$ 400 000 Tt, $c \simeq 4$ kJ / (kg K)

2.13.7 OCEAN ACIDIFICATION

Figure 30: Variation of ocean surface pH from the beginning of the industrial era to the 1990's.

- pH DECREASED 0,1 SO FAR
- PERHAPS 0,3 0,5 IN 21st CENTURY
- \rightarrow EFFECT ON CORAL REEF, SHELL CRUSTACEANS AND MOLLUSCS, ...

2.13.8 EFFECT OF TROPOSPHERIC H₂O

• GHG, BUT IMPACT OF HUMAN ACTIVI-TIES GLOBALLY NEGLIGIBLE IN TROPO-SPHERE; SHORT MEAN LIFE ($\sim 10 \text{ d}$)

Figure 31: Global water flows (in Tt/a).

2.13.9 GLOBAL WARMING FROM GHGs

- EARTH RECEIVES ENERGY FROM SUN IN FORM OF RADIATION, DISTRIBUTED OVER A WIDE RANGE OF WAVELENGTHS λ (OR FREQUENCIES ν)
- $\lambda = c/
 u, \, c \simeq 300\,000 \, \, {
 m km/s} \, \, {
 m LIGHT} \, {
 m SPEED}$
- EARTH RADIATES ENERGY TOWARDS SPACE, OVER A WIDE RANGE OF WAVELENGTHS
- \bullet SUN SURFACE TEMPERATURE \simeq 6000 K
- EARTH SURFACE TEMPERATURE $\simeq 288$ K
- WAVELENGTH OF MAX EMISSION (WIEN's LAW) $\lambda_{max} = 2,897 \cdot 10^{-3} \ / \ T$
- FOR THE SUN $\lambda_{max} = 0.483 \ \mu m$ (VISIBLE)
- FOR THE EARTH $\lambda_{max} = 9,99 \ \mu m$ (INFRARED)
- ATMOSPHERIC TRANSPARENCY/OPACITY TO RADIATION OF DIFFERENT λ

2.13.10 ATMOSPHERIC ABSORPTION AND EMISSION SPECTRA

Figure 32: Fraction of radiant energy absorbed by some atmospheric components as a function of wavelength (top), and emission spectra of the Sun and the Earth (bottom, not at scale).

2.13.11 PROCESSES INTERACTING IN GLOBAL WARMING

• PROCESSES NOT YET FULLY UNDERSTOOD

Figure 33: Scheme (simplified) of processes interacting in global warming.

2.13.12 FOSSIL FUELS AND CONTAMINANT EMISSIONS

• (ELEMENTAL COMPOSITIONS APPROXIMATED QUITE CRUDELY)

	YEARLY	APPROX	\mathbf{C}	CO_2	H_2O
FUEL	CONSUMPTN	COMPOSITN I	RELEASED I	RELEASED 1	RELEASED
	\mathbf{Gt}	(MASS)	\mathbf{Gt}	Gt	\mathbf{Gt}
OIL	4.13	86% C	3 51	12.98	5.31
		$14\%~{ m H}$	0.04		
ΝΑΤΠΡΑΙ	$\operatorname{GAS}2.45$	75% C	1.8/	6.75	5.51
		25% H	1.04		
COAL	3.73	76% C	2 80	10.26	1.17
		$3.5~\%~\mathrm{H}$	2.00		
TOTAL	10.3		8.2	30	12

• MORE ACCURATE BOOKKEEPING GIVES $\sim 10.1 \text{ Gt CARBON RELEASED}$ $\rightarrow 37.1 \text{ Gt CO}_2 (2018)$

2.13.13 CARBON FLUXES

Figure 34: Global fluxes (in Gt/a) and reserves (in Gt) of carbon.

2.13.14 GLOBAL WARMING POTENTIAL (GWP)

- EFFECT OF 1 kg OF A GIVEN GHG ON GW, RELATIVE TO 1 kg CO_2
- DEPENDING ON TIMEFRAME UNDER CONSIDERATION

GREENHOUSE

YEARLY CONCENTR.

\mathbf{GAS}	20 a	100 a	500 a	RISE
CO_2	1	1	1	0,4%
CH_4	56	$21,\!5$	6,5	0,6%
N_2O	280	310	170	$0,\!25~\%$
CFC–11 CCl ₃ F		12000		0 %
$CFC-12 \ CCl_3F_2$		16000		0 %
$\mathrm{HFC}23$	9100	11700	9800	
HFC-32	2100	650	200	
SF_6	16300	23900	34900	

2.14.1 EFFECT OF STRATOSPHERIC H₂O

- VERY LOW CONCENTRATION ~ 5.5 ppm
- MEAN LIFE MUCH LONGER IN STRATO-SPHERE (~ 2 a)
- STRATOSPHERIC H_2O FROM OXIDATION CH₄ AND EMISSIONS JET ENGINES
- H₂O EMITTED FROM JET ENGINES AT AL-TITUDE FORMS CRYSTALS AND CLOUDS (CONTRAILS – CONDENSATION TRAILS)

2.14.2 CONTRAILS

H₂O SOLIDIFIES OWING TO LOW T SOOT ACTS AS SOLIDIFICATION NUCLEUS (FOR STRATOSPHERIC H₂O, TOO)

Figure 35: Contrails issuing from an aircraft.

• AERODYNAMIC CONTRAILS

2.14.3 CONTRAIL FORMATION TEMPERATURE–HUMIDITY PLANE

• (from NASA LARC)

ABSENCE OF CONDENSATION NUCLEI \rightarrow SUBCOOLED WATER)

2.14.4 EVOLUTION OF EXHAUST GASES

2. CONTRAIL FORMS

3. DROPLETS FREEZES TO ICE

4. DROPLETS EVAPORATES, ICE PERSISTS

5. CONTRAIL DISAPPEARS

2.14.5 SLOPE OF HUMIDITY–TEMPERATURE LINE

- 1 kg EXHAUST GAS + N kg AIR \rightarrow (N + 1) kg MIXTURE
- N SPANS THE RANGE $0 \rightarrow \cdots$ (VERY LARGE)
- $T_{ex} + N T_{amb} = (N+1) T_{mix},$ $(c_p = \text{const})$
- $ightarrow \Delta T = T_{mix} T_{amb} = (T_{ex} T_{amb})/(N+1)$
 - SAME FOR HUMIDITY Y_{H_2O}

$$ightarrow \Delta Y_{H_2O} = Y_{H_2O,mix} - Y_{H_2O,amb} = rac{Y_{H_2O,ex} - Y_{H_2O,amb}}{N+1}$$

$$\Longrightarrow \Delta Y_{H_2O}/\Delta T = rac{Y_{H_2O,ex}-Y_{H_2O,amb}}{T_{ex}-T_{amb}} = {
m const}$$

2.14.6 SHORT–LIVED (LINEAR) CONTRAILS

• DRY, RELATIVELY WARM ATMOSPHERE

2.14.7 PERSISTENT CONTRAILS

• COLDER, MORE HUMID ATMOSPHERE

2.14.8 PERSISTENT, SPREADING CONTRAILS

• EVEN COLDER, MORE HUMID ATMOSPHERE

2.14.9 EFFECT OF η_o ON CONTRAILS

• HIGHER $\eta_o \rightarrow$ LOWER EXHAUST T

2.14.10 AERODYNAMIC CONTRAILS DUE TO PRESSURE DROP AT VORTEX CORE

2.14.11 EFFECT CONTRAILS ON CLIMATE

- 1. SHIELD SUNLIGHT AT DAYTIME
- 2. BLOCK OUTGOING IR RADIATION AT NIGHT
- BALANCE: $2 > 1 \Longrightarrow$ CONTRIBUTE TO GW
- EFFECT ~ 1.1% OF TOTAL, TO BE ADDED TO 2% FROM CO₂ EMISSIONS FROM A/Cs

Figure 36: Schematic of the impact of *contrails* on global warming.

2.14.12 EFFECT OF CONTRAILS: REDUCED DAILY TEMPERATURE RANGE

- IN DAYS FOLLOWING 11.09.2001, US AIRSPACE CLOSED
- DAILY TEMPER. RANGE ΔT INCREASED 1,1 °C
- RADIATION FROM EARTH $\propto \sigma T^4$
- $\Delta(\sigma T^4)^+ > \Delta(\sigma T^4)^-$ DUE TO NONLINEARITY
- NET FLUX INCREASES WITH ΔT

Figure 37: Effect of daily temperature range on radiative flux outgoing from Earth.

2.14.13 DURATION OF CONTRAILS

- FROM < 1 min UP TO > 1 d
- IF SHORT–LIVED (< 30 min), LITTLE HARM
- IF PERSISTENT, PROMOTE GW
- DURATION DEPENDS ON ATMOSPHERIC HUMIDITY AND TEMPERATURE
- \rightarrow MORE PERSISTENT IN HUMID CLIMATES, AT NIGHT, IN WINTER
 - (FURTHER, IN WINTER SUN SHIELD EFFECT LESS IMPORTANT)

2.14.14 PROPOSED COUNTERMEASURES AGAINST CONTRAILS

- INCREASE FLIGHT LEVEL AT MID-LATITUDES (BUT OZONE...), REDUCE IT AT THE TROPICS (...ATC)
- AVOID ZONES FAVOURING PERSISTENCE (FLEXIBLE FLIGHT LEVELS)
- REDUCE no. OF NIGHT FLIGHTS, CONCENTRATE AT DAWN/SUNSET
- BREAKING ICE CRYSTALS WITH MWs OR ULTRASONIC WAVES

2.14.15 FLIGHT LEVEL FOR OPTIMAL SAR

• SAR SPECIFIC AIR RANGE (DISTANCE TRAVELLED FOR UNIT FUEL MASS)

$$SAR \;=\; rac{V_0}{TSFC \cdot F} = rac{V_0}{TSFC} \cdot rac{L}{D} \cdot rac{1}{W} = rac{a \cdot M_0}{TSFC} \cdot rac{L}{D} \cdot rac{1}{W}$$

- LEVEL FLIGHT: L = W, F = D
- COMPONENTS OF DRAG *D*: VISCOUS, INDUCED (WING TIPS), WAVE (TRANSONIC)
- GIVEN $W o SAR = SAR(V_0, z) = SAR(M_0, z)$

2.14.16 AERODYNAMIC EFFICIENCY vs. $\rho(z)$

• $C_D = \text{FRICTION} + \text{INDUCED} + \text{WAVE} =$

$$C_{D0} + rac{C_L^2}{\pi \, A\!R \, e} + 20 \, (M_0 - M_c)^4 \, H(M_0 - M_c)$$

• AR ASPECT RATIO, e OSWALD EFFICIENCY, M_c CRITICAL MACH NUMBER

• LET
$$K = \frac{1}{\pi \ AR \ e}$$
; $L = W = C_L \frac{\rho V_0^2}{2} \cdot S_{wing}$
$$\frac{L}{D} = \frac{C_L}{C_D} = \frac{1}{\frac{C_{D0}}{C_L} + KC_L + \frac{20 \ (M_0 - M_c)^4}{C_L}} = \frac{1}{\frac{C_{D0} + 20 \ (V_0/a_0 - M_c)^4}{W} \frac{\rho V_0^2}{2} \cdot S_{wing} + \frac{2 \ K W}{\rho V_0^2 \ S_{wing}}}$$

- 1st TERM DENOM. DECR. WITH z, 2nd INCR. $\rightarrow \exists z_{opt}$
- TSFC TOO DEPENDS ON $(z, M_0) \rightarrow SAR = SAR(z, M_0)$

- AIRLINES TEND TO FLY AT SOMEWHAT HIGHER M_0 TO INCREASE PRODUCTIVITY
- (HIGHER z ALSO IMPLY A HEAVIER A/C, OWING TO LARGER WINGS, TAILPLANE, ENGINES, Δp CABIN/AMBIENT)
- JET STREAM

2.14.18 JET STREAM AND ROUTES

Figure 38: Westward (left) and eastward (right) London – New York routes.

- POLAR JET STREAM 7000 12000 m
- SUBTROPICAL JET STREAM 10000 16000 m

2.15 EFFECT OF BLACK CARBON

• MAYBE 2nd LEADING CAUSE GW AFTER CO₂

101

- WARMS THE ATMOSPHERE DIRECTLY
- REDUCES ALBEDO OF ICE CAPS, SNOW
- ENSUING EFFECT ON RIVERS
- MEAN LIFE DAYS OR WEEKS
- ACTIONS: PARTICULATE FILTERS FOR DIESEL ENGINES, REGULATE BURNING OF AGRI-CULTURAL RESIDUES AND COOKING STOVES

Figure 39: Combustion sources of black carbon.

2.16 PROPOSED COUNTERMEASURES AGAINST GLOBAL WARMING

- REDUCE FOSSIL FUEL USAGE
- BIOFUELS (1% GLOBAL FUEL CONSUMP-TION, BUT USING 1% ARABLE LAND – 2006; AGRICULT. RESIDUES, ALGAE)
- CARBON CAPTURE AND STORAGE (FOR GROUND PLANTS)
- (CONTAIN POPULATION GROWTH)
- GEOENGINEERING:
 - SULPHATE AEROSOLS IN STRATOSPHERE (BY A/Cs, PROJECTILES, BALLOONS)
 - SEAWATER SPRAYS
 - OCEAN FERTILIZATION WITH IRON
 - BIOCHAR
 - REFLECTING ROOFS
 - SPACE SHIELDS
 - * COSTS AND RISKS
 - * DO NOT COUNTER OCEAN ACIDIFICATION

2.17.19 STRICTLY RELATED ISSUES **1. POPULATION GROWTH** • RATE POPULATION GROWTH: $r = \log R_0/T$ $-R_0$ AVERAGE no. DAUGHTERS PER WOMAN (NET OF MORTALITY) $-\dot{T}$ INTERVAL BETWEEN GENERATIONS Female Secondary Education and Total Fertility Rates 8 7 6 **Total Fertility Rate** 5 4 3 2 $R^2 = 0.7058$ 0 0 20 40 60 80 100 Percent of Girls Enrolled in Secondary School • (DATA BELOW FOR USA ON Distribution of births by age and education Births reported in 2011 American Community Survey 30% Advanced degree 25% BA degree Women's completed fertility, by education: 2010 Children ever born, age 40-44 Some college HS or less 20% 15% 10% 1.67 5% 0% Less than high grad 15-19 20-24 25-29 30-34 35-39 40-49

2.17.20 STRICTLY RELATED ISSUES 2. LAND USE

• MEAT: RECOMMENDED MAX DAILY ALLOWANCE \sim 70 g/d \sim 25 kg/a

• MORE THAN 2/3 LAND \rightarrow ANIMAL FEED • RESPONSIBLE 18% GHGs EMISSIONS

2.17.21 STRICTLY RELATED ISSUES 3. FRESH WATER RESOURCES

• FRESH WATER RESOURCES ARE LIMITED

• DRIP IRRIGATION

Water Consumed to Supply Protein and Calories, Selected Foods

Water Consumed Water Consume:

to Supply

500 Calories

89

210

221

130

421

219

251

963

758

1,225

4,902

2.17.22 STRICTLY RELATED ISSUES 4. AGRICULTURAL EXPANSION

• HUMANS ADD AS MUCH N AND P TO ECOSYS-TEMS AS ALL NATURAL SOURCES

107

- EUTROPHICATION OF SURFACE WATERS
- PESTICIDES (200 000 DEATHS PER YEAR)
- INCREASED IRRIGATION LEADS TO SALINIZA-TION OF SOILS

2.18.1 DEPLETION OF THE STRATOSPHERIC OZONE LAYER

- GROUND-LEVEL OZONE O₃ POWERFUL RESPIRATORY/EYE IRRITANT; GHG
- OZONE CONCENTRATION PEAKS IN BETWEEN 10 AND 30 km ALTITUDE
- ONLY GAS SHIELDING UV RADIATION $\lambda < 0.28~\mu{
 m m}$
- ODG (OZONE DEPLETING GASES): CFC (Freon), NO_x, N₂O (INDIRECTLY)
2.18.2 OZONE CONCENTRATION vs. ALTITUDE

Ozone abundance (mPa)

Figure 41: Typical winter/summer ozone concentrations as a function of altitude (mean latitude, left); ozone concentration vs altitude, and typical A/C flight altitude (right).

0

1

3

Ozone number density (10¹² cm⁻³)

4

5

2.18.3 STRATOSPHERIC ODGs

- 1. LONG-LIVED CHEMICAL SPECIES (~INERT), DIFFUSING FROM TROPOSPHERE:
 - CHLOROFLUOROCARBONS CFC (Freon) (MEAN LIFE CFC-11 50 a, CFC-12 102 a)
 NITROUS OXIDE N₂O (MEAN LIFE 120 a)
- 2. JET ENGINE EMISSIONS:
 - NITRIC OXIDE NO
 - NITROUS OXIDE N₂O

2.18.4 OZONE DEPLETION BY CFCs

- UV RADIATION SPLITS CFCs, LIBERATING ATOMIC Cl
- OZONE DESTRUCTION VIA MECHANISM:
- $1.\ Cl + O_3 \rightarrow ClO + O_2$
- $2.\ ClO\,+\,O_3\,\rightarrow\,Cl\,+\,2\,\,O_2$
- WITHOUT NET Cl CONSUMPTION
- \rightarrow A SINGLE Cl ATOM CAN DESTROY FROM 10 000 UP TO 1 000 000 O_3 MOLECULES!
 - Br-CONTAINING CFCs (HALON) 8 50 TIMES MORE NOXIOUS
 - ANTARCTIC OZONE HOLE
 - CFCs BANNED, REPLACED BY:
 - HCFC, HYDROCHLOROFLUOROCARBONS (SHORTER MEAN LIFE, WEAK ODGs, YET GHGs
 - HFC (GHGs)
 - PENTANE (VOC)
 - POSSIBLY CO₂ OR NH₃

2.18.5 POLAR TEMPERATURES AND PSC (POLAR STRATOSPHERIC CLOUDS)

Minimum Air temperatures in the Polar Lower Stratosphere

2.18.6 OZONE DEPLETION POTENTIAL AND GWP

• ODP REFERRED TO CFC-11 (CCl₃F)

• GWP REFERRED TO CO₂

Gas	Atmospheric Lifetime (years)	Global Emissions in 2008 (Kt/yr) ^a	Ozone Depletion Potential (ODP) ^c	Global Warming Potential (GWP) ^c
Halogen source gases				
Chlorine gases				
CFC-11	45	52-91	1	4750
CFC-12	100	41–99	0.82	10900
CFC-113	85	3-8	0.85	6130
Carbon tetrachloride (CCl ₄)	26	40-80	0.82	1400
HCFCs	1-17	385-481	0.01-0.12	77-2220
Methyl chloroform (CH ₃ CCl ₃)	5	Less than 10	0.16	146
Methyl chloride (CH ₃ Cl)	1	3600-4600	0.02	13
Bromine gases				
Halon-1301	65	1–3	15.9	7140
Halon-1211	16	4–7	7.9	1890
Methyl bromide (CH ₃ Br)	0.8	110-150	0.66	5
Very short-lived gases (e.g., CHBr ₃)	Less than 0.5	b	^b very low	^b very low
Hydrofluorocarbons (HFCs)				
HFC-134a	13.4	149 ± 27	0	1370
HFC-23	222	12	0	14200
HFC-143a	47.1	17	0	4180
HFC-125	28.2	22	0	3420
HFC-152a	1.5	50	0	133
HFC-32	5.2	8.9	0	716

2.18.7 OZONE DEPLETION BY NO

- OZONE DEPLETION VIA MECHANISM: $\mathrm{NO} + \mathrm{O}_3
 ightarrow \mathrm{NO}_2 + \mathrm{O}_2$
- REACTION VIRTUALLY IRREVERSIBLE
- \rightarrow MOLECULE OF NO IS CONSUMED
 - STRATOSPHERIC NO FROM:
 - 1. N₂O DIFFUSING FROM THE GROUND, VIA REACTION

 $N_2O~+~O^*~\rightarrow~2\,NO$

(PLUS OTHERS); $O^* \equiv O(1D)$ EXCITED STATE OF ATOMIC O BY

 ${
m O}_3\,+\,h\,
u\,
ightarrow\,{
m O}^*\,+\,{
m O}_2$

 $ODP_{N20} = 0.017$

2. JET ENGINE EMISSIONS

2.18.8 PROJECTED OZONE CONCENTRATION

• HAD THE MONTREAL PROTOCOL NOT BEEN ENFORCED...

Figure 42: Projected ozone concentrations under current regulations (blue) and without (red).

• DOBSON UNIT = 0,01 mm O_3 AT STANDARD T, p

• A 1% REDUCTION OF THE OZONE COLUMN HEIGHT h_{O_3} RESULTS IN A 2% INCREASE OF GROUND UV RADIATION INTENSITY *I*

$$\frac{dI}{I} = -\kappa \, dh_{O_3} \quad \rightarrow \quad I = I_0 \, \exp\left(-\kappa \, h_{O_3}\right)$$

3.1.1 COMBUSTION CHAMBER: FUNDAMENTAL ASPECTS

• CONSTRAINTS:

- CROSS SECTION (LIMITED TO CONTAIN DRAG, SIZE, WEIGHT)
- LENGTH (LIMITED TO CONTAIN DRAG, SIZE, WEIGHT, STRESS ON TURBOMACHINERY AXIS) (EACH EXTRA kg $\rightarrow \simeq 3$ kg EXTRA AT TAKE–OFF)
- $ext{ SMALL PRESSURE DROP } (\epsilon_b = p_4/p_3 o ext{LOW } M)$

• DESIDERATA:

- LOW POLLUTANT EMISSIONS
- STABLE COMBUSTION ON WIDE RANGE $\dot{m}_f, \, f, \, V_0, \, p_a$
- $-\eta_b$ CLOSE TO 100%
- PATTERN FACTOR $(T_{4,max} T_{4,min})/(\overline{T_4} T_3)$ LOW (OR APPROPRIATE ANYWAY)
- LONG DURATION (COOLING AND MATERIALS)
- RELIABLE IGNITION, ALTITUDE RELIGHT
- LIMITED MANUFACTURING AND MAINTENANCE COSTS
- TREND TO RISE $\beta_o = \beta_d \beta_f \beta_c$ AND $\tau = T_4/T_a$ (FOR TSFC AND $I_a \rightarrow F/W$) MAKES ACHIEVING SUCH GOALS MORE DIFFICULT (EXCEPT RELIGHT)

3.1.2 LABIRYNTH SEALS

• TO REDUCE TIP LEAKAGE

3.1.3 TREND IN TURBINE ENTRY TEMPERATURE

- INCREASES $I_a \rightarrow$ REDUCED ENGINE SIZE/WEIGHT \rightarrow INCREASED PAYLOAD MASS
- PRICE: COSTLIER MATERIALS, HIGHER NEED **BLADE COOLING**
- TBC: THERMAL BARRIER COATING

3.1.4 TREND IN OVERALL PRESSURE RATIO

• REDUCING *TSFC*:

- DECREASES DOCs
- INCREASES PAYLOAD MASS
- PRICE: HEAVIER, COSTLIER TURBOMACHINE

3.1.5 CHAMBER CONFIGURATION

• CONSTRAINTS: LOW $\Delta p,$ SUFFICIENT $t_s, f \simeq 0.02$

120

Figure 43: Effect of constraints on chamber design.

(d)

3.1.6 IMPACT OF A TOO LONG CHAMBER

- INCREASED WEIGHT COMBUSTION CHAMBER
- INCREASED WEIGHT PRIMARY FLOWCASE
- INCREASED WEIGHT SECONDARY FLOW CASE
- INCREASED WEIGHT TURBOMACHIN. AXES
- INCREASED WEIGHT NACELLE
- MULTIPLY $imes \sim 3$
- FURTHER, INCREASED EXTERNAL DRAG

Figure 44: Cross–section of a turbofan.

3.1.7 TURBOFAN MASS BREAKDOWN

	Proportion of total	
Fan rotor & casing	18%	
IP Comp.	5%	
Structures	15%	
Shafts	3%	
LP Turb.	16%	
Nacelle	22%	
Core & externals	21%	
	100%	

Figure 45: Mass breakdown of a high by–pass ratio three–spool turbofan.

3.1.8 COMBUSTOR TYPES (1)

- TUBULAR (CAN): HEAVY, LONG; EASY TEST-ING AND MAINTENANCE. ABANDONED (EXCEPT SMALL F)
- ANNULAR: LOW Δp , <u>LOW EMISSIONS</u>; DIFFI-CULT TESTING, MAINTENANCE AND MANU-FACTURING, SENSITIVE TO INLET PROFILE DEFORMATION (MOST POPULAR FOR HIGH F)
- TUBO–ANNULAR: EASY TESTING

Figure 46: Tubular, tubo-annular, annular chambers (top to bottom). Side view (left), cross-section (right).

3.1.9 COMBUSTOR TYPES (2)

Figure 47: Liners of tubular (left) and annular (right) combustion chambers.

Figure 48: Arrangement of tubular, annular, tubo–annular chambers (left to right).

3.1.10 COMBUSTION CHAMBER COMPONENTS

• DIFFUSER

- LINER
- PRIMARY ZONE
- INTERMEDIATE ZONE
- DILUTION ZONE
- INJECTORS
- COOLING SYSTEM

Figure 49: Main combustion chamber components.

3.1.11 PRESSURE DROPS

$$ullet \Delta p = \Delta p_{cold} + \Delta p_{hot} \quad \left(rac{dp}{p} = - f' rac{\gamma \, M^2}{2} rac{dx}{D} - \gamma \, M^2 rac{dQ}{c_p \, T}
ight) \; .$$

- Δp_{cold} IN DIFFUSÈR AND PERFORATED LÍNER $\simeq 2-6~\%~p_c$
- $\Delta p_{cold}, \, \Delta p_{hot}$ PROPORTIONAL TO M^2
- Δp_{hot} IN COMBUSTOR RISES WITH T_4

Figure 50: Pressure drop in combustion chamber due to heat release.

3.1.12 DIFFUSER TYPES

• DIFFUSERS:

- CONICAL (SMALL HALF-ANGLE \rightarrow LONG)
- -DUMP (HIGHER Δp , SHORT)

Figure 51: Conical (top) and dump (bottom) diffusers.

3.1.13 PRIMARY ZONE

- $\bullet \simeq {\bf SEMICIRCULAR \ SHAPE}$
- PRIMARY AIR $\simeq 40\%$ OF $\dot{m}_a,$ INJECTED BY *SWIRLERS* AND JETS
- RECIRCULATION BY EITHER:
 - $\ FEW \ LARGE \ DIAMETER \ JETS \rightarrow MORE \\ STABLE$
 - MANY SMALL DIAMETER JETS \rightarrow LOWER EMISSIONS, HIGHER HEAT RELEASED PER UNIT VOLUME
- COMBUSTION CLOSE TO STOICHIOMETRIC $ightarrow T \sim 2500 \ {
 m K}$
- PRESENCE OF DISSOCIATION PRODUCTS (CO, OH, H, O, ...) AND UHC (Unburned HydroCarbons)

3.1.14 INTERMEDIATE ZONE

- INTERMEDIATE $\simeq 20\%$ OF \dot{m}_a , INJECTED THROUGH HOLES AND SLOTS
- RECOMBINATION OF CO, OH, H, O, ... AT INTERMEDIATE T
- AT HIGH ALTITUDE, LOW *p*:
 - $ightarrow \operatorname{REACTION}\,\operatorname{RATE}\,w\propto p^n\,\operatorname{LOW}$
 - **INTERMEDIATE ZONE SERVES AS**
 - \rightarrow EXTENSION TO PRIMARY
- $L_{intermediate\ zone} = 0.5 0.7\ D_{liner}, \mathrm{UP\ TO\ 1\ FOR}$ ENGINES OF LONG-RANGE A/Cs (HIGHER WEIGHT TSFC)

3.1.15 DILUTION

- DILUTION AIR $\simeq 40\%$ OF $\dot{m_a}$, INJECTED THROUGH HOLES AND SLOTS
- PATTERN FACTOR IMPROVES WITH IN-CREASING $L_{dilution \ zone}$, ASYMPTOTIC TREND
- $L_{dilution\ zone} = 1.5 1.8 \ D_{liner}$
- PATTERN FACTOR IMPORTANT FOR DURATION AND T_4
- IDEAL OUTLET T DISTRIBUTION NOT FLAT: T LOWER AT TURBINE BLADE ROOT (HIGHLY STRESSED) AND TIP (DUE TO SEALS)

3.1.16 INJECTORS

• SMALLER DROPLETS \rightarrow FASTER EVAPORATION

- AFFECT STABILITY, η_b , EMISSIONS UHC, CO, SOOT
- MUST ENSURE GOOD PERFORMANCE OVER WIDE RANGE OF \dot{m}_f AND f(OR EQUIVALENTLY A/F = 1/f)
- MAIN TYPES:
 - -PRESSURE-SWIRL
 - -AIRBLAST
 - VAPORIZER
 - PREMIX-VAPORIZER

3.1.17 PRESSURE-SWIRL INJECTORS

- SPRAY CONE ANGLE MUST BE CLOSE TO 90° TO MINIMIZE LENGTH
- $\bullet \Delta p_{injector} \propto \dot{m}_{f}^{2}, \mathrm{BUT} \ \dot{m}_{f} \ \mathrm{CAN} \ \mathrm{VARY} \ \mathrm{AS} \ 1.50$
- DUPLEX: TWO COALESCING JETS
- DISADVANTAGES: POSSIBLE BLOCKAGE OF SMALL PASSAGES, TENDENCY TO FORM SOOT AT HIGH p, COKING

Figure 52: Conical simplex (top) and duplex (bottom) injectors.

3.1.18 EFFECT OF SWIRL

- SWIRL NUMBER (R DUCT RADIUS):
- $S = \frac{\text{axial flux angular momentum}}{\text{axial flux linear momentum}} = \frac{1}{R} \frac{\int_{0}^{\infty} \rho \, r^{2} \, u \, w \, dr}{\int_{0}^{R} \rho \, r \, u^{2} \, dr}$
- 1. FLUID PUSHED OUTWARD \rightarrow DEPRESSION AT CENTRE \rightarrow (TOROIDAL) RECIRCULATION FOR S > 0,6
- 2. WHEN MIXING FLUID OF DIFFERENT ρ , DENSER ONE MUST BE INJECTED FROM *INNER* DUCT

Figure 53: Cross-section of a pressure–swirl atomizer (simplex).

3.1.19 AIRBLAST INJECTORS

• FUEL FILM STRAINED ON BOTH SIDES

- FORM LITTLE SOOT \rightarrow LOW RADIATION AND COKING $\rightarrow T_{liner}$ LOW
- DISADVANTAGES: NARROW STABILITY RANGE, ATOMIZATION INADEQUATE AT START–UP
- SOLUTION: PILOT

Figure 54: Airblast injector.

3.1.20 VAPORIZER INJECTORS

• FUEL 'VAPORIZED' BY HOT AIR FROM COM-PRESSOR AND HEAT FROM CHAMBER

135

• VAPORIZATION ACTUALLY INCOMPLETE

Figure 55: Vaporizer injector.

3.1.21 PREMIX-VAPORIZER INJECTORS

- FINELY ATOMIZED FUEL INJECTED IN AIR AT HIGH–SPEED → VAPORIZATION AND MIXING COMPLETE BEFORE IGNITION
- T MORE UNIFORM \rightarrow LOWER EMISSIONS
- DISADVANTAGES: *FLASHBACK*, START–UP \rightarrow PILOT

Figure 56: Premix-vaporizer injectors.

3.1.22 COOLING (1)

• *LINER*: CONTAINS COMBUSTION, DISTRIBUTES AIR

137

- MUST WITHSTAND MECHANICAL AND THER-MAL STRESSES, THERMAL FATIGUE
- MATERIALS FOR HIGH T; COOLING AIR (UP TO 50% \dot{m}_a)
- T_{liner} FROM BALANCE q IN AND OUT (DUE TO RADIATION AND CONVECTION)
- AS β_o INCREASES, HIGHER $T_3 \rightarrow$ COOLING MORE AND MORE CRITICAL
- FILM-COOLING, CONVECTION-COOLING (ROUGHENED WALLS), IMPINGEMENT-COOLING, TRANSPIRATION-COOLING

Figure 57: Wall cooling techniques.

Figure 58: Wall cooling techniques.

3.1.25 COOLING (4)

• TRANSPIRATING MATERIAL SHOULD FEATURE VERY SMALL, CLOSELY–SPACED HOLES \rightarrow CLOGGING DUE TO PARTICULATE (SOOT)

140

• "QUASI-TRANSPIRATING" MATERIALS (TRANSPLY, LAMILLOY)

Figure 59: Annular combustor of GE CF6–50 engine.

3.1.27 CONFIGURATION EXAMPLES: GE F–101

Figure 60: Annular combustor of GE F101 engine.

Figure 61: (Top) Annular combustor of RB211 engine, (bottom) cutaway of Rolls–Royce Trent 1000.

3.1.29 CONFIGURATION EXAMPLES: STEALTH AIRCRAFTS

Figure 62: Stealth bomber Northrop Grumman B–2 Spirit..
3.1.30 'STAGED' COMBUSTORS

• TO OPERATE OVER A WIDE RANGE OF CONDITIONS

Figure 63: Two–stage combustor.

• OR (IN THEORY) CATALYTIC COMBUSTION

3.2.1 COMBUSTION CHAMBERS: COMBUSTION FUNDAMENTALS

- EXOTHERMIC REACTION BETWEEN FUEL AND OXIDIZER
- FLAMES:
 - NONPREMIXED (OR DIFFUSION)
 - PREMIXED
 - PARTIALLY PREMIXED
- REGIMES:
 - LAMINAR
 - $-\,\mathrm{TURBULENT} \leftarrow Re \simeq 10^5$

Figure 64: Flames with nonpremixed, premixed, partially premixed reactants.

3.2.2 CONTROLLING FACTORS

- CHEMICAL:
 - REACTION RATES
- PHYSICAL:
 - DROPLET EVAPORATION
 - MIXING (TURBULENT)
 - DIFFUSION FUEL AND AIR (FOR NONPREMIXED FLAMES)
 - HEAT TRANSFER (CONVECTIVE/RADIATIVE)

Figure 65: Effect of turbulent fluctuations on *mean* species source term rate (for a particular case, nitric oxide formation from HC combustion); $\varphi = \frac{Z/(1-Z)}{(F/O)_{st}}$.

3.2.3 STOICHIOMETRIC COMBUSTION

- EXAMPLE: *n*-DECANE C₁₀H₂₂ AND AIR
- $\mathcal{M}_{C_{10}H_{22}} = 142,287 \text{ kg/kmol}$

• AIR COMPOSITION (IN MOLAR FRACTIONS X_i):

- $-\,\mathrm{N}_2$ 78,08 % ($\mathcal{M}_{N_2}=28,0134)$
- $-\operatorname{O_2}\ 20,95\ \%\ (\mathcal{M}_{O_2}=31,9988)$
- $\operatorname{Ar} 0,934 \% (\mathcal{M}_{Ar} = 39,948)$
- $-\operatorname{CO}_2 0,0411\% \ (\mathcal{M}_{CO_2} = 44,00995)$
- $-\simeq 21\%~O_2,~79\%~N_2
 ightarrow 3,76~MOLECULES~OF$ $N_2~FOR~EACH~MOLECULE~OF~O_2$
- $ightarrow \mathcal{M}_{ ext{aria}} = \sum_i X_i \mathcal{M}_i = 28,9645 \simeq 29 \, ext{kg/kmol}$
- STOICHIOMETRIC COMBUSTION:

 ${
m C_{10}H_{22}}{+}15,5~({
m O_2}\,+\,3,76\,{
m N_2})~
ightarrow$

 $\rightarrow \ 10 {\rm CO}_2 \! + \! 11 \, {\rm H}_2 {\rm O} \! + \! 58, 28 \, {\rm N}_2$

- $\bullet X_{\mathrm{C}_{10}\mathrm{H}_{22},\mathrm{st}} = 1 \; / \; (1 + 15, 5 + 58, 28) = 0,0134$
- $ullet Y_{\mathrm{C}_{10}\mathrm{H}_{22},\mathrm{st}} = 142,\!287 \; / \; (142,\!287 + 496 + 1632,\!6) \ = 0,\!0625$

3.2.4 FLAMMABILITY LIMITS

- FOR A MIXTURE OF *n*-DECANE/AIR AT p=1 atm, COMBUSTION CAN TAKE PLACE ONLY IF 0,75 < φ < 6
- IN NONPREMIXED COMBUSTION, SUCH A CONDITION IS CERTAINLY SATISFIED IN SOME ZONES
- IN PREMIXED COMBUSTION, CAN OR CAN-NOT BE SATISFIED, DEPENDING ON MIX-TURE COMPOSITION (LESS STABLE)

Figure 66: Flammability limits of a fuel/air mixture.

Figure 67: Ignition limits of Jet-A fuel, with the temperature of the fuel/air mixture as a parameter.

3.2.6 FLASH POINT

- p_{vap} INCREASING WITH T
- FLASH POINT: T AT WHICH CONCENTRA-TION FUEL VAPOURS IN AIR = LOWER FLAMMABILITY LIMIT (FOR p=1 atm)
- FLAMMABILITY RANGE NARROWER WHEN ADDING AN INERT (N₂, CO₂ \rightarrow TANK)

Figure 68: (left) Flammability limits of a propane/air mixture diluted with CO₂ or N₂, for p = 1 atm, T = 298,15 K; (right) concentration of O₂ below which ignition of a mixture containing JP-4 vapours is impossible (diluent N₂).

• IF IN AIR/VAPOURS (OF JP-4) MIXTURE IT IS $X_{O_2} < 9\% \rightarrow$ IGNITION IMPOSSIBLE AT ANY p (NOW REVISED < 12%)

3.2.7 IN-FLIGHT FUEL TEMPERATURE AND Jet-A FLAMMABILITY

Figure 69: Typical time evolution of fuel temperature in flight, and ensuing risk situations for Jet–A.

3.2.8 IN–FLIGHT FUEL TEMPERATURE AND Jet–B FLAMMABILITY

Figure 70: Typical time evolution of fuel temperature in flight, and ensuing risk situations for Jet-B.

3.2.9 DESCRIPTION OF CHEMISTRY

 $C_{10}H_{22} + 15, 5O_2 \rightarrow 10CO_2 + 11H_2O + Q_R$ • GENERAL FORM:

- FOR ELEMENTARY REACTION STEPS:

$$\sum_{i=1}^N
u_i' \operatorname{M}_i \ o \ \sum_{i=1}^N
u_i'' \operatorname{M}_i$$

- FOR REVERSIBLE REACTIONS:

$$\sum_{i=1}^{N} \nu'_{i} \operatorname{M}_{i} \ \rightleftharpoons \ \sum_{i=1}^{N} \nu''_{i} \operatorname{M}_{i}$$

• DESCRIPTION LEVELS:

- COMBUSTION "MIXED IS BURNT"

- COMBUSTION IN CHEMICAL EQUILIBRIUM

- COMBUSTION WITH FINITE-RATE CHEMISTRY

3.2.10 COMBUSTION "MIXED IS BURNT"

- EXAMPLE: KEROSENE/AIR COMBUSTION
- KEROSENE ~ 89% *n*-DECANE $C_{10}H_{22}$, 11% TOLUENE C₇H₈ (IN MASS) $\longrightarrow \frac{n_{C_{10}H_{22}}}{n_{C_7H_8}} \simeq 5,24$
- $ullet ext{AIR} \sim 79\% ext{ N}_2, \ 21\% ext{ O}_2 \ (ext{IN VOL.}) \longrightarrow rac{n_{N_2}}{n_{O_2}} \simeq 3,76$
- FOR STOICHIOMETRIC COMBUSTION ($\varphi = 1$):
- $C_7H_8 + 5,24 \cdot C_{10}H_{22} + 90,22 \left(O_2 + 3,76 \cdot N_2\right) \rightarrow$
 - $ightarrow 59,4 \cdot \mathrm{CO}_2 \,+\, 61,64 \,\cdot\, \mathrm{H_2O} \,+\, 339,23 \,\cdot\, \mathrm{N_2}$
 - FOR RICH COMBUSTION ($\varphi > 1$):

$$ightarrow \ 59,4\cdot\mathrm{CO}_2{+}61,64\cdot\mathrm{H}_2\mathrm{O}{+}90,22\cdot\left(rac{1}{arphi}\,-\,1
ight)\cdot\mathrm{O}_2{+}rac{339,23}{arphi}\cdot\mathrm{N}_2$$

 φ

$$\begin{array}{l} \hline \begin{array}{l} 3.2.11 \ \text{COMBUSTION} \\ \hline \text{IN CHEMICAL EQUILIBRIUM} \end{array} \\ \bullet \text{PARTIAL PRESSURE OF SPECIES } i \\ p_i &= X_i p \\ \bullet \text{EXAMPLE: H}_2 + \frac{1}{2} \operatorname{O}_2 \rightarrow \operatorname{H}_2 \operatorname{O} \\ K_{p,H_2O}(T) &= \frac{p_{H_2O}}{p_{H_2}(p_{O_2})^{1/2}} \\ \hline \begin{array}{l} X_{H_2O} \\ \overline{X_{H_2}(X_{O_2})^{1/2}} &= K_{p,H_2O}(T) \cdot p^{1/2} &= K_{X,H_2O}(T,p) \\ \bullet \text{ IN GENERAL } K_p(T) &= \prod_{i=1}^N p_i^{\Delta \nu_i}, \text{ WITH } \Delta \nu_i = \nu_i'' - \nu_i' \\ \bullet p \text{ ESPRESSED IN UNITS OF REFERENCE } p_0 \\ (1 \text{ atm, 100 kPa}) \\ \bullet \text{ CODE STANJAN,} \\ \text{my.fit.edu/~dkirk/4262/Lectures} \\ \bullet \text{ CODE CEA,} \\ \text{www.grc.nasa.gov/WWW/CEAWeb/ceaguiDownload-win.htm} \end{array}$$

3.2.12 DERIVATION OF EQUILIBRIUM CONSTANT
$$K_p$$

$$\bullet \text{ REACTION } \sum_{i=1}^N \nu_i' \, \mathrm{M}_i \ \rightleftharpoons \ \sum_{i=1}^N \nu_i'' \, \mathrm{M}_i$$

• GIBBS FUNCTION G = H - T S UNCHANGED

$$\sum_{i=1}^N \Delta
u_i \hat{g}_i \ = \ \sum_{i=1}^N \Delta
u_i \left(\hat{h}_i \ - \ T \ \hat{s}_i
ight) \ = \ 0$$

•
$$\hat{g}_i, \, \hat{h}_i, \, \hat{s}_i \text{ RELATIVE TO MOLAR UNIT}$$

• $d\hat{s}_i = \hat{c}_{p,i} \frac{dT}{T} - \mathcal{R} \frac{dp_i}{p_i} \Longrightarrow \, \hat{s}_i = \hat{s}_{0,i}(p_0,T) - \mathcal{R} \log \frac{p_i}{p_0}$
 $\sum_{i=1}^N \Delta
u_i \left[\hat{h}_i - T \left(\hat{s}_{0,i} - \mathcal{R} \log \frac{p_i}{p_0} \right) \right] = 0$

$$\sum_{i=1}^N \Delta
u_i \left(\hat{h}_i \,-\, T \, \hat{s}_{0,i}
ight) \,=\, -\, \mathcal{R} \, T \, \sum_{i=1}^N \Delta
u_i \, \log rac{p_i}{p_0}$$

$$\exp\left[-\frac{1}{\mathcal{R}T}\sum_{i=1}^{N}\Delta\nu_{i}\left(\hat{h}_{i}-T\hat{s}_{0,i}\right)\right]=\prod_{i=1}^{N}\left(\frac{p_{i}}{p_{0}}\right)^{\Delta\nu_{i}}=K_{p}(T)$$

3.2.13 ABSOLUTE ENTHALPY

- FOR EACH CHEMICAL SPECIES, A *FORMATION ENTHALPY* IS DEFINED
- $ullet ext{ e.g., } ext{H}_2 + rac{1}{2} ext{ O}_2 o ext{H}_2 ext{O} + \hat{Q}_{f,H_2O}$
- \hat{Q}_f HEAT OF FORMATION = $\Delta \hat{h}_{f,H_2O}$
- ullet FOR ELEMENTS IN MOLECULAR FORM IN THEIR STANDARD STATE $\Delta \hat{h}_{f,i} = 0$
- e.g., $H_2(g)$, $O_2(g)$, C(s), Hg(l), ...
- ullet PER UNIT MASS $\Delta h_{f,i} = \Delta \hat{h}_{f,i}/\mathcal{M}_i$
- $\Delta h_{f,i}$ TABULATED FOR $T_0 = 298,15$ K, $p_0 = 100$ kPa (OR 1 atm)
- ABSOLUTE ENTHALPY: $h_i = \Delta h_{f,i} + \int_{T_0}^T c_{p,i}(T') \, dT'$
- ENTHALPY OF A MIXTURE:

PER UNIT MASS: $h = \sum_{i=1}^{N} Y_i h_i(T)$ PER MOLAR UNIT: $\hat{h} = \sum_{i=1}^{N} X_i \hat{h}_i(T)$

3.2.14 FINITE-RATE CHEMISTRY COMBUSTION (SINGLE REACTION)

$$\frac{\partial \rho Y_i}{\partial t} + \frac{\partial \rho u_l Y_i}{\partial x_l} = \frac{\partial}{\partial x_l} \left(\rho D_i \frac{\partial Y_i}{\partial x_l} \right) + w_i, \quad i = 1, 2, ..., N$$
• w_i PRODUCTION RATE *i*-th CHEMICAL SPECIES
[kg/(m³s)]: FROM LAW OF MASS ACTION
 $w_i = \mathcal{M}_i \Delta \nu_i \left\{ k_f \prod_{j=1}^{N} [M_j]^{\nu'_j} \right\}, \quad i = 1, 2, ..., N$
* {...} REACTION RATE [no. reacts./(N_A m³s)]:
[M_j] = $\frac{n_j}{V} = \frac{m_j / \mathcal{M}_j}{V} = \frac{Y_j m / \mathcal{M}_j}{V} = \frac{\rho Y_j}{\mathcal{M}_j}$
• k_f 'CONSTANT' OF FORWARD REACTION:
 $k_f = B T^{\alpha} \exp\left(-\frac{E}{\mathcal{R}T}\right)$
• B FREQUENCY FACTOR, E ACTIVATION
ENERGY

• $m = \sum_i \nu'_i$ MOLECULARITY OF REACTION

$$w_i = \mathcal{M}_i \Delta \nu_i \rho^m B T^{lpha} \exp\left(\!-rac{E}{\mathcal{R}T}\!
ight) \prod_{j=1}^N \left(\!rac{Y_j}{\mathcal{M}_j}\!
ight)^{\nu_j'}_{,i} i = 1, ..., N$$

3.2.15 FINITE–RATE CHEMISTRY COMBUSTION (M REACTIONS)

• IN PRESENCE OF M REACTIONS $(m_k = \sum_i \nu'_{i,k})$:

 $w_i =$

$$\Delta
u_{i,k} \ = \
u_{i,k}^{\prime \prime} \ - \
u_{i,k}^{\prime}$$

- ARRHENIUS EXPRESSION
- B_k FREQUENCY FACTOR, E_k ACTIVATION ENERGY (T_k ACTIVATION TEMPERATURE) OF k-th REACTON
- EXPRESSED IN UNITS cm, g, s, mol \rightarrow CONVERT
- FINITE-RATE CHEMISTRY SOMETIMES CALLED 'NONEQUILIBRIUM CHEMISTRY' (IMPROPERLY)

3.2.16 FINITE–RATE CHEMISTRY: RELATIONSHIP AMONG k_f , k_b , K_p

• FOR REVERSIBLE REACTIONS

$$w_i \!=\! \mathcal{M}_i \!\sum_{k=1}^M \! \Delta
u_{i,k} \! \left\{\! k_{f,k} \prod_{j=1}^N [\mathrm{M}_j]^{
u_{j,k}'} \!-\! k_{b,k} \prod_{j=1}^N [\mathrm{M}_j]^{
u_{j,k}''} \!
ight\} \!=\! ...$$

• AT EQUILIBRIUM (0–D, STEADY–STATE SYSTEMS):

$$egin{aligned} k_{f,k} \prod_{j=1}^{N} [\mathrm{M}_{j}]^{
u_{j,k}'} &= k_{b,k} \prod_{j=1}^{N} [\mathrm{M}_{j}]^{
u_{j,k}''} &\Longrightarrow rac{k_{f,k}}{k_{b,k}} &= \prod_{j=1}^{N} [\mathrm{M}_{j}]^{\Delta
u_{j,k}} \ [\mathrm{M}_{j}] &= rac{n_{j}}{V} = rac{p_{j}}{\mathcal{R} T} = rac{p_{j}/p_{0}}{\mathcal{R} T/p_{0}} \end{aligned}$$

$$rac{k_{f,k}}{k_{b,k}} = K_{p,k}(T) \, (\mathcal{R} \, T/p_0)^{-\sum_j \Delta
u_{j,k}} = rac{K_{p,k}(T)}{(\mathcal{R} \, T/p_0)^{n_k - m_k}}$$

- MOLECULARITY FORWARD/BACKWARD STEPS: $m_k = \sum_i \nu'_{i,k}, \ n_k = \sum_i \nu''_{i,k}$
- w_i CAN BE EXPRESSED AS

$$w_i = \mathcal{M}_i \sum_{k=1}^M \Delta
u_{i,k} \, k_{f,k} \prod_{j=1}^N [\mathrm{M}_j]^{
u'_{j,k}} \left\{ 1 - rac{k_{b,k}}{k_{f,k}} \prod_{l=1}^N [\mathrm{M}_l]^{\Delta
u_{l,k}}
ight\} = \ \mathcal{M}_i \sum_{k=1}^M \Delta
u_{i,k} \, k_{f,k} \prod_{j=1}^N [\mathrm{M}_j]^{
u'_{j,k}} \left\{ 1 - rac{(\mathcal{R} \, T/p_0)^{n_k - m_k}}{K_{p,k}} \prod_{l=1}^N [\mathrm{M}_l]^{\Delta
u_{l,k}}
ight\} = \cdots$$

3.2.17 EQUILIBRIUM PRODUCTION RATE

$$w_i = \mathcal{M}_i \sum_{k=1}^M \Delta
u_{i,k}
ho^{m_k} B_{f,k} T^{lpha_k} \exp\left(-rac{E_k}{\mathcal{R}T}
ight) \prod_{j=1}^N \left(rac{Y_j}{\mathcal{M}_j}
ight)^{
u_{j,k}'} \cdot \left\{1 - rac{(
ho \, \mathcal{R} \, T/p_0)^{n_k - m_k}}{K_{p,k}} \prod_{l=1}^N \left(rac{Y_l}{\mathcal{M}_l}
ight)^{\Delta
u_{l,k}}
ight\}$$

162

• $\{\cdots\} = 0$, BUT AT EQUILIBRIUM $B_{f,k} \to \infty$

- $ightarrow w_i = \infty \cdot 0$ INDETERMINANT ightarrow ARRHENIUS NOT APPLICABLE
 - IN GENERAL $w_i \neq 0$ AT EQUILIBRIUM; ATEQUILIBRIUM, STATEQUANTITIESEXPRESSED AS A FUNCTION OF 2 QUANTITIES, e.g., (p,T), (p,h), (h,s), ...

$$w_i \!=\!\! rac{\partial
ho(p,T) \, Y_i(p,T)}{\partial t} \!+\! rac{\partial \,
ho(p,T) \, u_l \, Y_i(p,T)}{\partial x_l} \!-\! rac{\partial }{\partial x_l} \! \left[\!
ho(p,\!T) \, D_i rac{\partial Y_i(p,T)}{\partial x_l}
ight]$$

 $eq 0 ext{ UNLESS: } \partial/\partial x_k = 0 \quad (0-D), \\
\partial/\partial t = 0 \quad (ext{STEADY STATE})$

• NO REAL SYSTEM AT EQUILIBRIUM, BUT IT CAN BE APPROACHED IF $t_s \gg t_c$ t_s STAY TIME,

 t_c REACTION CHARACTERISTIC TIME

3.2.18 BE AND DR REACTIONS

- BINARY EXCHANGE REACTIONS: $m_k = n_k$ e.g., H + O₂ \rightleftharpoons OH + O
- DISSOCIATION-RECOMBINATION REACTIONS: $m_k \neq n_k$ e.g., $O_2 + M \Rightarrow 2 \text{ O} + M$ REQUIRE PRESENCE THIRD-BODY TO SATISFY EQS. MOMENTUM AND ENERGY THIRD-BODY (OR CHAPERON) EFFICIENCY e.g., FORWARD STEP $O_2 + M \rightarrow 2 O + M$

$$w_O = 2 \mathcal{M}_O \rho^2 B_f T^{\alpha_f} \exp\left(-rac{E_f}{\mathcal{R} T}
ight) rac{Y_{O_2}}{\mathcal{M}_{O_2}} \sum_{i=1}^N rac{arepsilon_i Y_i}{\mathcal{M}_i}$$

\mathbf{M}_i	$arepsilon_i$
O_2	$0,\!4$
$\mathbf{N_2}$	$0,\!4$
H_2O	$6,\!54$
CO_2	1,5
CO	$0,\!75$

3.2.19 CHEMICAL KINETICS MECHANISMS FOR FINITE–RATE CHEMISTRY

• DIFFERENT LEVELS OF APPROXIMATION:

- DETAILED
- REDUCED/SIMPLIFIED
- SEMI-GLOBAL
- $-\operatorname{GLOBAL}$

3.2.20 EXAMPLE: HYDROGEN/OXYGEN CHEMISTR

• DETAILED MECH (N = 8 SPECIES, M = 37 REAC'

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Mechanism of the Hydrogen-Oxygen Reaction				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	E.				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	70.30				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.08				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	26.30				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18.40				
	13.80				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	77.13				
$H_1O + O \rightarrow OH + OH$ 1.51×10^{10} 1.14 $9, H + H + M \rightarrow H_1 + M$ $1.80 \times 10^{10} - 1.00$ -1.00 $10, H_1 + M \rightarrow H + H + M$ $6.99 \times 10^{10} - 1.00$ -1.00	0.42				
9. $H + H + M \rightarrow H_{d} + M$ 10. $H_{1} + M \rightarrow H + H + M$ 5.99 × 10 ¹⁰ -1.00	71.64				
$10. H_1 + M \rightarrow H + H + M.$ 6.99 × 10 ¹⁰ -1.00	0.00				
	436,08				
$11. H + OH + M \rightarrow H_{0}O + M$ $2.20 \times 10^{22} - 2.00$	0.00				
$12. H_{2}O + M \rightarrow H + OH + M$ $3.80 \times 10^{21} - 2.00$	499.41				
$13. \ 0 + 0 + M \rightarrow 0_3 + M$ $2.90 \times 10^{17} - 1.00$	0.00				
$14. O_1 + M \rightarrow O + O + M$ 6.81×10^{10} -1.00	496.41				
15. H + O ₂ + M → HO ₂ + M 2.30 × 10 ¹⁰ -0.80	0.00				
15 HO ₂ + M \rightarrow H + O ₂ + M 3.26 × 10 ¹⁰ - 0.80	195,88				
17. NO ₂ + H → OH + OH = 0.00 1.50 × 10 ¹⁰ 0.00	4.20				
18. OH = OH → HO ₂ + H 1.33 × 10 ¹¹ 0.00	168.30				
$19. HO_2 + H \rightarrow H_2 + O_2$ 2.50×10^{10} 0.00	2.90				
20. H ₂ + O ₂ → HO ₂ + H 6.84 × 10 ¹³ 0.00	243.10				
21. $HO_2 + H - H_2O + O$ 3.00 × 10 ¹⁰ 0.00	7.20				
22. H ₂ O + O - HO ₂ + H 2.67 × 10 ¹¹ 0.00	242.52				
23. HO; + Q → OH + O; 1.80 × 10 ¹⁰ 0.00	- 1.70				
24. OH + O ₂ → HO ₂ + O 2.18 × 10 ¹³ 0.00	230.61				
25. HO ₂ + OH → H ₂ O + O ₂ 6.00 × 10 ¹¹ 0.00	0.00				
26. B ₂ O + O ₂ → BO ₂ + OB 7.31 × 10 ¹⁴ 0.00	303.53				
27. HO ₂ + HO ₂ - H ₂ O ₂ + O ₂ 2.50 × 10 ¹¹ 0.00	-5.20				
28. OH + OH + M → H ₂ O ₂ + M 5.25 × 10 ²² - 2.00	0.00				
29. H ₂ O ₂ + M → OH + OH + M 2.10 × 10 ¹⁴ - 2.00	206.80				
$30. H_2O_2 + H \rightarrow H_1 + HO_2$ 1.70×10^{12} 0.00	15.70				
31. $H_2 + HO_2 \rightarrow H_2O_2 + H$ 1.15 x 10 ⁴⁰ 0.00	50,88				
32. H ₂ O ₂ + H → H ₂ O + OH 1.00 × 10 ¹⁴ 0.00	15,00				
33. $H_{2}O + OH \rightarrow H_{2}O_{2} + H$ 2.67 × 10 ¹² 0.00	307.51				
34. H ₂ O ₂ + O → OH + HO ₂ 2.80 × 10 ¹⁰ 0.00	26.80				
35. $OH + HO_1 \rightarrow H_2O_2 + O$ 8.40 $\times 10^{12}$ 0.00	84.09				
36. H ₂ O ₂ + OH - H ₂ O + HO ₂ 5.40 × 10 ⁻² 0.00	4.20				
37. $H_1O + HO_2 \rightarrow H_2O_2 + OH$ 1.63 × 10 ¹⁰ 0.00	132.71				

A has units of cm mole s; E_A has units of k1 mole ⁴; $k = AT^a \exp(-E_A/RT)$. Collision efficiences in reactions with M: $f_{\rm H_2} = 100$; $f_{\rm H_2} = 0.35$; $f_{\rm H_2} = 0.50$; $f_{\rm H_2} = 0.5$.

• SIMPLIFIED MECHANISM (N = 7, M = 7):

Reaction		Aª	n	T_n [K]
$1. H + O_2 = OH + O$		3.52 × 10 ¹⁶	-0.7	8590
$\mathbf{Z} \cdot \mathbf{H}_2 + \mathbf{Q} \Longrightarrow \mathbf{O}\mathbf{H} + \mathbf{H}$		5.06 × 10 ⁴	2.67	3166
$3. H_2 + OH = H_2O + H$		1.17×10^{9}	1.3	1829
$4L H + O_2 + M \rightarrow HO_2 + M^{\flat}$	ka	5.75 = 10 ¹⁹	-1.4	0
	kon	4.65×10^{12}	0.44	0
$5t HO_2 + H \rightarrow OH + OH$		7.08×10^{10}	0	148
$6f. HO_2 + H \rightarrow H_2 + O_2$		1.66×10^{13}	0	.414
7L $HO_2 + OH \rightarrow H_2O + O_2$		2.89 × 10 ¹³	0	-250

⁸ Units are mol. s, cm³, and K.

^b Chaperon efficiencies are 2.5 for H₂, 16.0 for H₂O, and 1.0 for all other species: Troe faileff with $F_r = 0.5$ [16].

• SEMI-GLOBAL MECHANISM (N = 5, M = 2):

$$\begin{array}{rcl} 3H_2+O_2 & \stackrel{I}{\rightleftharpoons} & 2H_2O+2H \\ H+H+M & \stackrel{II}{\rightleftharpoons} & H_2+M, \end{array}$$

• GLOBAL MECHANISM (N = 3, M = 1):

 $2H_2+O_2\rightarrow 2H_2O$

3.2.21 HYDROCARBON/AIR CHEMISTRY

• DETAILED MECHANISM (N = 1200 CHEMICAL SPECIES, M = 7000 REACTIONS):

166

- SIMPLIFIED MECHANISM (N = 100, M = 500):
- SEMI-GLOBAL MECHANISM (N = 11, M = 22):

$$C_n H_{2m} + \frac{n}{2}O_2 = nCO + mH_2.$$

TABLE V

Reaction mechanism used in quasi-global mechanism for CO-H₂-O₂ system. Reverse rates computed from relevant equilibrium constants. Same units as Table 1

Reaction	A	n	Ea
$H + O_2 = O + OH$	2.2×1014	0.0	16.8
$H_2 + O = H + OH$	1.8 × 1010	1,0	8.9
$O + H_2O = OH + OH$	6.8 × 1013	0.0	18,4
$OH + H_2 = H + H_2O$	2.2 × 1013	0.0	5,1
$H + O_2 + M = HO_2 + M$	1.5 × 1015	0.0	-1.0
$O + HO_2 = O_2 + OH$	5.0 × 1013	0.0	1.0
$H + HO_2 = OH + OH$	2.5×1014	0.0	1.9
$H + HO_2 = H_2 + O_2$	2.5×1013	0.0	0.7
$OH + HO_2 = H_2O + O_2$	5.0 × 1013	0.0	1.0
$HO_2 + HO_2 = H_2O_2 + O_2$	1.0×1013	0.0	1.0
$H_2O_2 + M$	10.555		
=OH+OH+M	1.2 × 1017	0.0	45.5
$HO_2 + H_2 = H_2O_2 + H$	7.3 × 1011	0.0	18.7
$H_2O_2 + OH = H_2O + HO_2$	1.0 × 1013	0.0	1.8
$CO + OH = CO_2 + H$	1.5×10^{7}	1.3	-0.8
$CO + O_2 = CO_2 + O$	3.1×10^{11}	0.0	37.6
$CO + O + M = CO_n + M$	5.9 × 1015	0.0	141
$CO + HO_0 = CO_2 + OH$	1.5×1014	0.0	23.7
OH + M = O + H + M	8.0 × 1019	-10	103.7
$O_2 + M = O + O + M$	5.1 × 1015	0.0	115.0
$H_2 + M = H + H + M$	2.2 × 1014	0.0	96.0
$H_{0}O + M = H + OH + M$	2.2×1010	0.0	105.0

• GLOBAL MECHANISM (N = 4, M = 1): $w = B T^{\alpha} \exp(-\frac{E_A}{\mathcal{R}T}) [C_{10}H_{22}]^{0,25} [O_2]^{1,5}$

3.2.22 ADIABATIC COMBUSTION

- *ALL* REACTION HEAT ASSUMED TO INCREASE TEMPERATURE OF PRODUCTS
- $ightarrow ext{GLOBALLY} \ \Delta Q = 0 \leftrightarrows \Delta h = 0$
 - FOR EQUILIBRIUM COMBUSTION, COMPUTATION AT (p, h) GIVEN
- $ightarrow T_{af}$ ADIABATIC FLAME TEMPERATURE

3.2.23 ADIABATIC COMBUSTION TEMPERATURE vs. φ

Figure 71: Adiabatic combustion temperature (in chemical equilibrium) of a kerosene/air mixture.

3.2.24 EQUILIBRIUM CONDITIONS

- AT EQUILIBRIUM, PROPERTIES OF THE REACTING MIXTURE DETERMINED ONCE ARE SPECIFIED:
 - a. TWO STATE VARIABLES
 e.g., (p, T), (p, h), (h, s), (p, Y_{H2O}), ...
 b. THE PROPORTIONS OF REACTANTS
 e.g., X_i, Y_i, n_i, ... (OF CHEMICAL SPECIES)
 [OR THE ATOM MOLES]

3.2.25 KEROSENE/AIR COMBUSTION

$$egin{aligned} \mathrm{C_7H_8}+5, 24 \cdot \mathrm{C_{10}H_{22}} + rac{90, 22}{arphi} & (\mathrm{O_2}+3, 76 \cdot \mathrm{N_2}) & operatorres \end{aligned}$$
NO. OF *ATOMS* OF INDIVIDUAL ELEMENTS:
 $n_C = 7 + 5, 24 \cdot 10 = 59, 4$
 $n_H = 8 + 5, 24 \cdot 22 = 123, 28$
 $n_O = 2 \cdot 90, 22/arphi = 180, 44/arphi$
 $-n_N = 2 \cdot 3, 76 \cdot 90, 22/arphi = 678, 46/arphi$

$$\left\langle \frac{T}{O}
ight
angle_{st} = rac{\mathcal{M}_{\mathrm{C_7H_8}} + 3,24 + \mathcal{M}_{\mathrm{C_{10}H_{22}}}}{90,22 \left(\mathcal{M}_{\mathrm{O_2}} + 3,76 \cdot \mathcal{M}_{\mathrm{N_2}}
ight)} = 0,0676$$

• NUMBER OF ATOMS UNIVOCALLY DETER-MINES ABUNDANCE OF REACTANTS:

• e.g., TAKING INTO ACCOUNT C_7H_{16} , C_8H_{18} TOO:

 $m C_7H_8\,+\,lpha\,C_7H_{16}\,+\,eta\,C_8H_{18}\,+\,\gamma\,C_{10}H_{22}$

 $n_C = 7 + 7 \alpha + 8 \beta + 10 \gamma = 59,4$

 $n_{H} = 8 + 16 \, lpha + 18 \, eta + 22 \, \gamma = 123,28$

• SOLUTION: $0,6 \alpha + 0,4 \beta = 0 \implies \alpha = \beta = 0$

3.2.26 EXAMPLE: KEROSENE/AIR ADIABATIC COMBUSTION, $A/F = 50 ~(\rightarrow f=0,02)$

• CF6–50 CONDITIONS AT TAKE–OFF:

*
$$T_f \simeq 298,15$$
 K, $T_o \simeq 850$ K
* $p \simeq 3$ MPa = 30 bar

$$*\;A/F = 50 \,{ o}\, f = rac{1}{A/F} \,{ o}\, arphi = rac{f}{f_{st}} \,{=}\, rac{1/50}{0,0676} \,{\simeq}\, 0,3$$

$$\bullet \ h = Y_f \ h_f(T_f) + Y_o \ h_o(T_o)$$

•
$$Y_f = rac{1}{1 + A/F} = 0,0196; \ Y_o = 1$$
 - $Y_f = 0,9804$

- FOR EQUILIBRIUM COMPUTATION WITH CEA, USE FILES ON dma.dima.uniroma1.it:8080/STAFF2/lentini.html:
 - * thermo.inp, thermo.lib (OVERWRITE)
 - * jetaair.inp

3.2.27 CEA INPUT FILE jetaair.inp

! EXAMPLE Jet-A/air:

I.

ļ

- (a) Combustion or assigned-enthalpy-and-pressure problem (hp).
- (b) Fuel is surrogate kerosene 89% C10H22, 11% C7H8 at 298.15 K The oxidant is air at 850 K.
 - (c) A single value of the oxidant-to-fuel weight ratio is assigned.
 Weight fractions are fractions of fuel relative to total fuel and fractions of oxidant relative to total oxidant.
 - (d) Mixture enthalpy is calculated from reactant values given in thermo.lib. This is because data for these species are given in thermo.lib and the species names match exactly.
 - (e) Only some 50 species are included in the product data base ('only' data Note: these species names must match those used in thermo.lib.
 - (f) Assigned pressures is 30 bar.
- (g) Mixture properties are to be printed in SI units (siunits).
- ! (h) Mole fractions > 1.e-15 are to be in e-format (trace=1.e-15).

reac oxid Air		wtfrac=	1	t(k) = 85	0.
fuel C10H22(L),	n-dec	wtfrac=	0.89	t(k) = 29	8.15
fuel C7H8(L)		wtfrac=	0.11	t(k) = 29	8.15
prob case=Jet-A/ai	r, hp,	p(bar)=3	0.,	o/f = 50	•
output siunits, tra	ce=1.e-15)			
only H2	Н		02		0
OH	H20		HO2		H2O2
N2	Ar		CO		C02
CH	CH2		CH3		CH4
C2H	C2H2,ac	etylene	С2НЗ,	vinyl	C2H4
C2H5	C2H6		СЗНЗ,	1-propynl	C3H4,propyne
C3H6,propylene	C3H7,i-	propyl	СЗН7,	n-propyl	C4H4,1,3-cyclo-
C4H6,butadiene	C4H8,1-	butene	C4H9,	n-butyl	C5H6,1,3cyclo-
C5H11,pentyl	C6H5,ph	enyl	C6H6		C6H13,n-hexyl
C7H8	C7H15,n	-heptyl	C10H2	1,n-decyl	HCO
CH2OH	CH3O		СНЗОН		HCCO
CH2CO,ketene	С6Н5О,р	henoxy	C6H50	H,phenol	
! N	NO		N20		NO2

172

3.2.28 CEA OUTPUT FILE jetaair.out (1/2)

THERMODYNAMIC EQUILIBRIUM COMBUSTION PROPERTIES AT ASSIGNED PRESSURES

CASE = Jet-A/air,

	REACTANT	WT FRACTION	ENERGY	TEMP
		(SEE NOTE)	KJ/KG-MOL	K
OXIDANT	Air	1.0000000	16645.137	850.000
FUEL	C10H22(L),n-dec	0.8900000	-249500.000	298.150
FUEL	C7H8(L)	0.1100000	12179.997	298.150

O/F= 50.00000 %FUEL= 1.960784 R,EQ.RATIO= 0.298911 PHI,EQ.RATIO= 0.297843

THERMODYNAMIC PROPERTIES

P, BAR	30.000
Т, К	1541.23
RHO, KG/CU M	6.7722 0
H, KJ/KG	533.08
U, KJ/KG	90.089
G, KJ/KG	-11476.5
S, KJ/(KG)(K)	7.7922
M, (1/n)	28.928
(dLV/dLP)t	-1.00000
(dLV/dLT)p	1.0001
Cp, KJ/(KG)(K)	1.2657
GAMMAs	1.2939
SON VEL,M/SEC	757.1

3.2.29 CEA OUTPUT FILE jetaair.out (2/2)

MOLE FRACTIONS

*Ar	9.1695-3
*C0	1.7396-7
*CO2	4.0532-2
*H	1.3277-9
H02	3.0847-7
*H2	6.4868-8
H2O	4.1720-2
H2O2	2.2937-8
*N2	7.6454-1
*0	4.8465-7
*0H	3.2749-5
*02	1.4401-1

* THERMODYNAMIC PROPERTIES FITTED TO 20000.K

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN 1.000000E-15 FOR ALL ASSIGNED CONDITIONS

*CH	CH2	CH3	CH2OH	CH3O
CH4	СНЗОН	C2H	C2H2,acetylene	CH2CO,ketene
C2H3,vinyl	C2H4	C2H5	C2H6	C3H3,1-propynl
C3H4,propyne	C3H6,propylene	C3H7,n-propyl	C3H7,i-propyl	C4H4,1,3-cyclo-
C4H6,butadiene	C4H8,1-butene	C4H9,n-butyl	C5H6,1,3cyclo-	C5H11,pentyl
C6H5,phenyl	C6H5O,phenoxy	С6Н6	C6H5OH,phenol	C6H13,n-hexyl
С7Н8	C7H15,n-heptyl	C10H21,n-decyl	HCO	HCCO

3.2.30 UNBURNT SPECIES (*IN EQUILIBRIUM*)

• FOR $A/F = 50 \ (\varphi \simeq 0,3)$:

- FOR $\varphi = 1$:
 - $-\,T_{af}=\,2637,\!84\,\,{
 m K}
 -\sum Y_{unburnt}\,\simeq\,\,0,\!019\,=\,1,\!9\,\,\%$
- THIS HOLDS AT EQUILIBRIUM (IN ACTUALITY $Y_{unburnt}$ CERTAINLY LARGER)

3.2.31 *EICO* GROSSLY UNDERESTIMATED IN EQUILIBRIUM

• for
$$A/F = 50$$
:

$$egin{aligned} EICO_{ ext{equilibrium}} &= 1000 \cdot rac{Y_{ ext{fuel}}}{Y_{ ext{fuel}}} \ &= 1000 \cdot rac{X_{ ext{CO}} \, \mathcal{M}_{ ext{CO}} / \mathcal{M}}{Y_{ ext{fuel}}} \ &= 1000 \cdot rac{1.74 \cdot 10^{-7} \cdot 28 / 28.9}{0.0196} \ &= 0.0085 \, rac{ ext{gco}}{ ext{kg_{ ext{fuel}}}} \end{aligned}$$

• MEASURED VALUE: $EICO = 0.14 \frac{\text{g}_{\text{CO}}}{\text{kg}_{\text{fuel}}}$

• SAME FOR *EIUHC* (STRONGLY CORRELATED TO *EICO*) Environmental Impact of Aircraft Engines 2018/19, D. Lentini, Sapienza Univ. di Roma

3.2.32CEA INPUT FILE jetaairN.inp – WITH N CHEMISTRY

177

! EXAMPLE Jet-A/air with N chemistry:

- (a) Combustion or assigned-enthalpy-and-pressure problem (hp).
- (b) Fuel is surrogate kerosene 89% C10H22, 11% C7H8 at 298.15 K The oxidant is air at 850 K.
- (c) A single value of the oxidant-to-fuel weight ratio is assigned.Weight fractions are fractions of fuel relative to total fuel and fractions of oxidant relative to total oxidant.
- (d) Mixture enthalpy is calculated from reactant values given in thermo.lib. This is because data for these species are given in thermo.lib and the species names match exactly.
- (e) Only some 50 species are included in the product data base ('only' data Note: these species names must match those used in thermo.lib.
- (f) Assigned pressures is 30 bar.

İ.

(g) Mixture properties are to be printed in SI units (siunits).

```
(h) Mole fractions > 1.e-15 are to be in e-format (trace=1.e-15).
```

reac	oxid Air	wtfrac= 1	t(k) = 850).
	fuel C10H22(L),n-	-dec wtfrac= (t(k) = 298	3.15
	fuel C7H8(L)	wtfrac= (t(k) = 298	3.15
prob	case=Jet-A/air-	+N, hp, p(bar)=	=30., o/f = 5	50.
outpu	ut siunits, trace	e=1.e-15		
only	H2	Н	02	0
	ОН	H20	H02	H2O2
	N2	Ar	CO	C02
	СН	CH2	CH3	CH4
	C2H	C2H2,acetylene	C2H3,vinyl	C2H4
	C2H5	С2Н6	C3H3,1-propynl	C3H4,propyne
	C3H6,propylene	C3H7,i-propyl	C3H7,n-propyl	C4H4,1,3-cyclo-
	C4H6,butadiene	C4H8,1-butene	C4H9,n-butyl	C5H6,1,3cyclo-
	C5H11,pentyl	C6H5,phenyl	С6Н6	C6H13,n-hexyl
	C7H8	C7H15,n-heptyl	C10H21,n-decyl	HCO
	CH2OH	CH3O	СНЗОН	HCCO
	CH2CO,ketene	C6H5O,phenoxy	C6H5OH,phenol	
	Ν	NO	N20	NO2

3.2.33CEA OUTPUT FILE jetaairN.out – WITH N CHEMISTRY

THERMODYNAMIC EQUILIBRIUM COMBUSTION PROPERTIES AT ASSIGNED PRESSURES CASE = Jet-A/air+N,

O/F= 50.00000 %FUEL= 1.960784 R,EQ.RATIO= 0.298911 PHI,EQ.RATIO= 0.297843 THERMODYNAMIC PROPERTIES

P, BAR 30.000 Τ, Κ 1538.22 RHO, KG/CU M 6.7855 0 M, (1/n)28.928 Cp, KJ/(KG)(K) 1.2829 GAMMAs 1.2887 SON VEL,M/SEC 754.8 MOLE FRACTIONS *Ar 9.1696-3 *C0 1.6703-7 *CO2 4.0533-2 *H 1.2599-9 HO2 3.0129-7 *H2 6.2570-8 H20 4.1721-2 H2O2 2.2512-8 $*\mathbb{N}$ 2.515 - 14*NO 1.1946-3 NO2 2.6003-5 *N2 7.6394-1 N20 3.9168-7 *0 4.6518-7 *OH 3.1921-5 *02 1.4338-1

3.2.34 CONSIDERATIONS ON NITROGEN CHEMISTRY

- WHEN INCLUDING N, NO, NO₂, N_2O :
 - $-T_{af}$ DECREASES ONLY 3 K (for $\varphi \simeq 0, 3$)
 - $-X_{NO,eq}=0.12~\%
 ightarrow \mathrm{EINO_x}\simeq 100~\mathrm{g/kg_f}$

 - $(EINO_x IN TERMS OF NO_2)$
- HOWEVER, N CHEMISTRY SLOW $(t_c \gg t_s)$ \rightarrow EQUILIBRIUM <u>NOT</u> APPLICABLE

3.2.35 $EINO_x$ GROSSLY OVERESTIMATED IN EQUILIBRIUM

• for A/F = 50:

$$\begin{split} EINO_{\text{x,equilibrium}} &= 1000 \cdot \frac{Y_{\text{NO}_2}}{Y_{\text{fuel}}} = 1000 \cdot \frac{\mathcal{M}_{\text{NO}_2}}{\mathcal{M}_{\text{NO}}} \cdot \frac{Y_{\text{NO}}}{Y_{\text{fuel}}} \\ &= 1000 \cdot \frac{\mathcal{M}_{\text{NO}_2}}{\mathcal{M}_{\text{NO}}} \cdot \frac{X_{\text{NO}} \mathcal{M}_{\text{NO}} / \mathcal{M}}{Y_{\text{fuel}}} \\ &= 1000 \cdot \frac{X_{\text{NO}} \mathcal{M}_{\text{NO}_2} / \mathcal{M}}{Y_{\text{fuel}}} \\ &= 1000 \cdot \frac{1.2 \cdot 10^{-3} \cdot 46 / 28.9}{0.0196} \\ &= 97.5 \frac{\text{g}_{\text{NO}_x}}{\text{kg}_{\text{fuel}}} \end{split}$$

• MEASURED VALUE: $EINO_x = 28 \; rac{\mathrm{g}_{\mathrm{NO}_{\mathrm{x}}}}{\mathrm{kg}_{\mathrm{fuel}}}$
3.2.36 PREMIXED LAMINAR FLAMES

- (GASEOUS REACTANTS)
- LAMINAR FLAME PROPAGATION SPEED $S_L \simeq 0.43 ~{
 m m/s}~(arphi=1,~p~{
 m ATMOSPHERIC})$
- CONTROLLING FACTORS: CHEMICAL KINETICS AND HEAT CONDUCTION
- DEPENDS ON p, φ, T_{in}
- *u* FLOW SPEED:
 - * $u = S_L$ STABLE COMBUSTION
 - * $u > S_L FLAMEOUT$
 - * $u < S_L FLASHBACK$

3.2.37 PREMIXED TURBULENT FLAMES

• TURBULENT FLAME PROPAGATION SPEED:

182

$$S_T \,=\, rac{\dot{m}_{burnt}}{
ho\,A}$$

- $S_T \gg S_L$ BECAUSE FLAME FRONT IS WRINKLED
- S_T INCREASES WITH TURBULENCE INTENSITY
- INTENSITY: $u'/\overline{u} = (\text{RMS VELOCITY FLUCTUA-TIONS})/(\text{MEAN VELOCITY})$

3.2.38 NONPREMIXED LAMINAR FLAMES

- CONTROLLING FACTOR: SPECIES DIFFUSION
- INTRINSIC FLAME PROPAGATION SPEED DOES NOT EXIST (COMBUSTION MORE STABLE)
 - HOMOGENEOUS (GASEOUS REACTANTS
 JET FLAMES)
 - HETEROGENEOUS (e.g., LIQUID FUEL, GASEOUS OXIDIZER)

3.2.39 NONPREMIXED TURBULENT FLAMES

• TRANSITION FOR $Re_j \simeq 8000$

Figure 72: Aspect of a nonpremixed jet flame as the fuel jet velocity is increased.

3.2.40 HETEROGENEOUS FLAMES: EVAPORATION

• EVAPORATION RELATED TO HEAT TRANSFER FROM COMBUSTION PRODUCTS TO DROPLETS

 $\rightarrow T_d$ INCREASES, D_d DECREASES (d = DROPLET)

3.3.1 COMBUSTION CHAMBERS: COMBUSTION EFFICIENCY η_b

- ullet IN ORDER TO OBTAIN A HIGH $\eta_b \longrightarrow t_s \geq t_e + t_m + t_c$
 - $-t_s$ STAY TIME IN THE CHAMBER
 - $-t_e$ EVAPORATION TIME
 - $-t_m$ MIXING TIME
 - $-t_c$ CHARACTERISTIC CHEMICAL TIME
- SELDOM $t_e \simeq t_m \simeq t_c$
- USUALLY ONE OF 3 TIMES \gg OTHERS (CONTROLLING FACTOR)
- WHICH ONE OF 3 TIMES IS CONTROLLING DEPENDS UPON OPERATING CONDITIONS (START-UP, IDLE, TAKE-OFF, CLIMB, CRUISE)
- IN BORDERLINE SITUATIONS, 2 TIMES CAN BE \simeq , WHILE THIRD IS \ll

3.3.2 EVAPORATION TIME

- DEPENDS UPON DROPLET SIZE (SMD), TURBULENCE INTENSITY, p_3
- $SMD = ext{SAUTER MEAN DIAMETER}$ $= \sum_i n_i D_i^3 / \sum_i n_i D_i^2$
- n_i NO. DROPLETS OF DIAMETER D_i
- THERMAL POWER TRANSFERRED FROM HOT GASES TO DROPLETS:

$$\dot{Q}_t = \sum_i \mathsf{h}_c \, (T_g - T_d) \pi \, D_i^2 \, n_i$$

• THERMAL ENERGY NEEDED TO FULLY VAPORIZE DROPLETS:

$$E_{ev} = \sum_i \left[c \left(T_b - T_d
ight) \, + \, \lambda_{ev}
ight] \,
ho \, \pi \, rac{D_i^3}{6} n_i$$

• FRACTION OF DROPLETS VAPORIZED PER UNIT TIME:

$$\mathsf{f}_{ev} = rac{\dot{Q}_t}{E_{ev}} \propto rac{\sum_i n_i \ D_i^2}{\sum_i n_i \ D_i^3} \propto rac{1}{SMD}$$

3.3.3 EVAPORATION: EFFECT OF DIAMETER

\rightarrow FUEL MUST BE FINELY ATOMIZED

Figure 73: Fraction of (diesel) fuel vaporized, as a function of stay time, for several values of Sauter mean diameter.

3.3.4 EVAPORATION: EFFECT OF TURBULENCE AND PRESSURE

• CAN BECOME CONTROLLING FACTOR AT LOW p_3

Figure 74: Fraction of fuel (kerosene) vaporized as a function of stay time, for SMD = 60 μ m, for different pressure levels (a) 0,1 MPa, b) 1 MPa, c) 3 MPa), and different rms velocity.

3.3.5 MIXING TIME

• INVERSELY PROPORTNL TO MIXING RATE \dot{m}_{mix} (kg/s OF REACTANTS BEING MIXED)

$\dot{m}_{mix} \propto [DIFFUSIVITY] \cdot [AREA] \cdot [CONCENTR. GRAD]$

 $\propto \ [
ho \, u_j \, l] \cdot [l^2] \cdot [1/l] \ = \
ho \, u_j \, l^2$

* NOTE: TURBULENT [DIFFUSIVITY]

* $ho =
ho_3 = p_3/(R\,T_3)$

* $u_j \simeq (2 \Delta p_{liner} / \rho)^{1/2}$ AIR JET SPEED (BERNOUILLI) * l CHARACTERISTIC CHAMBER SIZE

$$\dot{m}_{mix} \propto
ho \sqrt{rac{\Delta p_{liner}}{
ho}} \, l^2 = \sqrt{
ho \Delta p_{liner}} \, l^2 = \sqrt{rac{p_3}{RT_3}} \sqrt{\Delta p_{liner}} \, l^2$$
 $\propto rac{p_3}{\sqrt{T_3}} \sqrt{rac{\Delta p_{liner}}{p_3}} \, l^2$

ullet GIVEN $l,\,T_3,\,\Delta p_{liner}/p_3
ightarrow \dot{m}_{mix} \propto p_3$

 $\Longrightarrow t_m \propto rac{1}{p_3}$

3.3.6 CHARACTERISTIC CHEMICAL TIME

- INVERSELY PROPORTIONAL TO PRODUCTION RATE w_i [e.g., kg/(m³s) OF FUEL BEING BURNED]
- MOLECULARITY OF MOST REACTIONS $m_k = 2$
- IF CHEMICAL KINETICS IS CONTROLLING \rightarrow BACKWARD RATE \simeq NEGLIGIBLE

$$w_i = \mathcal{M}_i \sum_{k=1}^M \Delta \nu_{i,k} \,
ho^{m_k} B_k \, T^{lpha_k} \, \exp\left(-rac{E_k}{\mathcal{R}T}
ight) \prod_{j=1}^N \left(rac{Y_j}{\mathcal{M}_j}
ight)^{
u_{j,k}'}$$

• GIVEN TEMPERATURE AND CONCENTRATIONS \rightarrow

$$w_i \, \propto \,
ho^2 \, \propto \, p_3^2$$
 ,

• EXPERIMENTAL DATA: $w_i \propto p_3^{1,75} \div p_3^{1,8}$

$$\Longrightarrow t_c \propto rac{1}{p_3^{1,75}}$$

3.3.7 t_c , t_m AS A FUNCTION OF PRESSURE p_3

- TYPICALLY FOR $p_3 < 100$ kPa: $t_c \gg t_m, t_e$
- TYPICALLY FOR $p_3 > 300$ kPa: $t_m \gg t_c, t_e$
- \bullet FOR 100 kPa $\leq p_3 \leq$ 300 kPa: $t_c \sim t_m \gg t_e$

Figure 75: Typical trend of mixing and characteristic chemical times as a function of chamber pressure.

3.3.8 THEORETICAL TREND OF η_b vs. $p_3^{1,75}$

- $egin{array}{l} \bullet {
 m GIVEN} \ t_s o \eta_b \propto rac{1}{\max{(t_e,t_m,t_c)}} \ \bullet {
 m WHEN} \ {
 m PLOTTING} \ \eta_b \ {
 m vs.} \ p_3^{1,75} o \ {
 m STRAIGHT} \ {
 m LINE} \ {
 m FOR} \ p_3 < 100 \ {
 m kPa}, \ {
 m CURVE} \propto p_3 = (p_3^{1,75})^{1/1,75} = (p_3^{1,75})^{0,57} \ {
 m FOR} \ p_3 > 300 \ {
 m kPa} \end{array}$
- $p_3^{1,75}$ LOAD PARAMETER $\theta \propto$ HEAT RELEASE (MAY INCLUDE DEPENDENCE UPON T_3 , \dot{m}_a , SIZE)

Figure 76: Theoretical trend of combustion efficiency.

ullet BUT THE ACTUAL CURVE DOES NOT REACH DOWN TO $p_3=0$

3.3.9 ACTUAL TREND OF η_b vs. θ

- ACTUAL CURVE DOES NOT REACH DOWN TO $p_3 = 0$ BECAUSE OF:
 - FLAMMABILITY LIMITS
 - -HEAT TRANSFER (GREATER WEIGHT AT LOW p_3)
 - ATOMIZATION (t_e LONGER AT LOW p_3)
- \rightarrow RELIGHT DIFFICULT AT ALTITUDE

Figure 77: Actual curve of combustion efficiency.

3.3.10 IN ORDER TO OBTAIN A HIGH η_b

- LARGER VOLUME CHAMBER TO INCREASE t_s (BUT WEIGHT INCREASES TOO ...)
- REDUCE t_e , t_m , t_c (ATOMIZATION, TURBU-LENCE, PRESSURE)
- REDUCE AIR SHARE DEVOTED TO WALL COOLING (FUEL DOES NOT FULLY BURN AT LOW T)
- \rightarrow TRANSPIRATION COOLING

3.4.1 COMBUSTION CHAMBERS: FUELS

- ORIGIN OF FOSSIL FUELS:
- PHOTOSYNTHESIS REACTION:

 $n CO_2 + n H_2O + sunlight \longrightarrow (CH_2O)_n + n O_2$

- (CH₂O)_n CARBOHYDRATES:
 - CELLULOSE
 - **SUGARS**
- CONVERTED INTO FATS $(CH_2)_n O_m$ BY PLANTS (SEEDS) AND ANIMALS
- $ullet \, \mathbf{m} \ll \mathbf{n}
 ightarrow (\mathrm{CH}_2)_\mathrm{n} \mathbf{O}_\mathrm{m} \sim (\mathrm{CH}_2)_\mathrm{n}, \, \mathrm{H/C} \sim 2$

3.4.2 CLASSIFICATION OF HYDROCARBONS

- 1. PARAFFINS (ALIPHATICS) C_nH_{2n+2} (METHANE CH_4 , ETHANE C_2H_6 , PROPANE C_3H_8 , *n*-BUTANE C_4H_{10} , ..., *n*-EPTANE C_7H_{16} , *n*-OCTANE C_8H_{18} , ..., *n*-DECANE $C_{10}H_{22}$, ...)
- 2. ISOPARAFFINS (ISOALIPHATICS) C_nH_{2n+2} , $n \geq 3$ (*i*-BUTANE C_4H_{10} , ...)
- 3. CYCLOPARAFFINS (CYCLOALIPHATICS, NAPHTHENS) C_nH_{2n} (CYCLOPROPANE C_3H_6 , ...)
- 4. AROMATICS C_nH_{2n-6} (BENZENE C_6H_6 , TOLUENE C_7H_8 ,...)
- 5. OLEFINS C_nH_{2n} (ETHYLENE C_2H_4 , ...; AFTER *CRACKING*)

3.4.3 TYPICAL KEROSENE COMPOSITION

• DEPENDS UPON SOURCE, AND TREATMENT:

- $\sim 60\%$ PARAFFINS (HIGH H/C, NO COKE, LITTLE SOOT)
- $\sim 20\%$ CYCLOPARAFFINS (HIGH H/C, NO COKE, LITTLE SOOT)
- $\sim 20\%$ AROMATICS (LOW H/C, MUCH SOOT, HYGROSCOPIC, RUBBER SOLVENT)

3.4.4 PROPERTIES OF SOME HYDROCARBONS

Α	D	[A]	В
			_

199

	MOLAR	VAPORIZ	HEATING	STOICH 1	FLAMMAB	IGNIT	FLAME
	MASS	HEAT	VALUE	MIXTURE	LIMITS	TEMPER	TEMPER
						STOICH	STOICH
	kg/kmol	MJ/kg	MJ/kg	(F/O)	arphi	\mathbf{C}	Κ
$METHANE \ CH_4$	$16,\! 0$	0,509	50	0,0583	$0,\!435\!-\!1,\!76$	900	2232
<i>n</i> -BUTANE C ₄ H ₁₀	$58,\!1$	0,386	45,7	0,0650	$0,\!530\!-\!3,\!56$	700	2238
TOLUENE C_7H_8	$92,\!1$	0,363	40,9	$0,\!0745$	$0,\!425\!-\!3,\!40$	840	2327
<i>n</i> -OCTANE C ₈ H ₁₈	$114,\!2$	0,300	$44,\!8$	0,0664	$0,\!505\!-\!4,\!50$	510	2279
<i>n</i> -DECANE C ₁₀ H ₂	$_{2}$ 142,3	0,277	$44,\!6$	0,0667	$0,\!445\!-\!3,\!69$	$\boldsymbol{495}$	2269

•
$$m H_2 + rac{1}{2}
m O_2
ightarrow
m H_2O + 242, 1 \ kJ/mol = 120, 1 \ rac{
m MJ}{
m kg \ H_2}$$

$$ullet$$
 C + O₂ $ightarrow$ CO₂ + 393,5 kJ/mol = 32,75 $rac{
m MJ}{
m kg~C}$

$$ullet \mathrm{C} + rac{1}{2} \,\mathrm{O}_2 o \mathrm{CO} + 110,5 \,\,\mathrm{kJ/mol} = 9,2 \; rac{\mathrm{MJ}}{\mathrm{kg} \;\mathrm{C}}$$

 $\Longrightarrow \mathrm{LOW}~\mathrm{H/C}~\mathrm{RATIO} \leftrightarrow \mathrm{LOW}~Q_f$

3.4.5 FUEL CONTAMINANTS

- RUBBERS (UNDER ACTION OXYGEN, LIGHT, METAL CATALYSTS Cu Zn)
- WATER (DISSOLVED, EMULSIONATED, FREE)
- SULPHUR (CORROSIVE, POLLUTING)
- SODIUM (FROM SEA NaCl \rightarrow HCl CORROSIVE)
- VANADIUM (BLADE DEPOSITS BELOW 922 K)

• (SEDIMENTS, ASH)

Figure 78: Water solubility in different aeronautical fuels.

3.4.6 ADDITIVES

- RUBBER PREVENTION (ANTIOXIDANTS, METAL DEACTIVATORS, CATALYTIC PAS-SIVANTS)
- ANTIRUST (HYDROCARBONS WITH AFFINITY TO METALS)
- ANTI-ICE:
 - GLICEROL: HOWEVER, CAN FORM GEL \rightarrow ADDED WHEN REFUELLING (MILITARY A/Cs)
 - HEATERS ON FUEL LINES AND FILTERS (CIVIL A/Cs)
- ANTISTATICS (Stadis 450)
- LUBRICANTS (NATURALLY PRESENT IN FUELS, CAN BE DESTROYED BY H)
- BIOCIDES (TOXIC)
- {ANTISMOKE} (ORGANIC COMPOUNDS OF Ba, Mn, Fe; BETTER TO ACT ON φ)

3.4.7 AVIATION FUELS

• SPECIFICATIONS: FREEZING POINT, FLASH POINT, VOLATILITY, FLUIDITY, CORROSIVITY, STABILITY, CONTAMINANT CONTENT, ...

• JET-A1, JP-5, JP-8 (KEROSENE)

FUEL	USE	FREEZING	FLASH
JET–A	USA	-40 °C	38 °C
JET-A1	INTERNATIONAL	-47 °C	38 °C
$\rm JP{-}5$	AIRCRAFT CARRIERS	-46 °C	60 °C
JP–6	XB-70	-54 °C	•••
JP-7	SR-71	-43 °C	60 °C
JP-8	MILITARY	-47 °C	38 °C

• JET-B, JP-4 (MIXTURE GASOLINE-KEROSENE; UNDER REPLACEMENT)

FUEL	USE	FREEZING	FLASH
JET–B	CANADA, ALASKA	-51 °C	(-29 °C)
JP-4	MILITARY	-72 °C	(-29 °C)

3.4.8 VAPOUR PRESSURE

• AFFECTS FLASH POINT

Figure 79: Vapour pressure of different aeronautical fuels as a function of temperature.

Figure 80: Boiling range of different aviation fuels (left); freezing point of different hydrocarbons as a function of the number of carbon atoms in the molecule (right).

Figure 81: Distillation curves of different fuels.

4.1 POLLUTANT FORMATION AND EMISSION CONTROL

• POLLUTION:

- NEAR AIRPORTS
- AFTER EMISSIONS AT ALTITUDE
- SMOKE (SOOT PARTICULATE)
- UHC, VOC
- SO_x
- NO_x
- CO
- CO₂, H₂O (CONTAMINANTS)

4.2 STRATEGIES FOR EMISSION CONTROL

• CONTROL (IN GENERAL):

- PRE-TREATMENT OF FUEL

- MODIFICATIONS OF COMBUSTION PROCESS

- POST-TREATMENT OF EXHAUST GASES

• (DISPERSION)

4.3.1 PARTICULATE

- TERMINOLOGY:
 - AEROSOL (MOST GENERAL, LIQUID OR SOLID DISPERSED IN ATMOSPHERE)
 - DUST (SOLID PARTICLES FROM GRINDING/CRUSHING)
 - SMOKE (SOLID PARTICLES FROM VAPOUR CONDENSATION. IF $C \rightarrow SOOT$)
 - FOG (LIQUID PARTICLES SUSPENDED IN ATMOSPHERE)
 - SMOG (PARTICLES OF DIAMETER \sim WAVELENGTH OF LIGHT)
- PRIMARY PARTICULATE (COMBUST. PRODUCT)
 - **SOOT**
 - ASH (IN COAL COMBUSTION: OXIDES OF Si, Ca, Al + TRACES OTHER MINERALS)
- SECONDARY PARTICULATE (PRODUCED BY REACTIONS IN ATMOSPHERE):
 - $-\mathbf{SMOG}$

4.3.2 PRIMARY AND SECONDARY PARTICLES

• PRIMARY:

- PULVERIZED COAL $(50 150 \ \mu m)$
- SOOT (~ 1 nm 1 μ m, GENERATED IN COMBUSTION OF ALL HCs):
 - * PARTICULATE (SOLID)
 - * CENOSPHERES (HOLLOW)
- ASHES (COAL COMBUSTION): FLY, BOTTOM

• SECONDARY:

– FORMED IN THE PRESENCE OF HCs, NO_x , SO_x , NH_3

4.3.3 SIZE AND CHARACTERISTICS OF SUSPENDED PARTICLES

Figure 82: Size and characteristics of suspended particles: EM electromagnetic, UV ultraviolet, IR infrared, MW microwave.

4.3.4 FINE PARTICLES

- PM10: PARTICLES DIAMETER< 10 μ m (STANDARD 1987)
- PM2,5: PARTICLES DIAMETER $< 2,5 \ \mu m$ (STANDARD 1997, MORE REPRESENTATIVE)
- PARTICLES DIAMETER > 10 μ m FILTERED BY NOSE AND THROAT
- PARTICLES DIAMETER 5 10 μ m REMOVED BY TRACHEA AND BRONCHI
- INHALABLE PARTICLES: DIAMETER < 10 $\mu {\rm m}$
- FINE PARTICLES: DIAMETER $< 2.5 \ \mu m$
- PARTICLES HARMFUL TO LUNGS: DIAMETER $0.5 5 \ \mu m$
- BUT ALSO $< 0,1 \ \mu m$ (NANOPARTICLES)
- MOST FINE PARTICLES IN AIR ARE SECONDARY

4.3.5 SOOT

- VISIBLE AS SMOKE
- FORMED IN COMBUSTION OF ALL HCs
- SOLID PARTICLES CONTAINING C (~ 96% IN MASS), H
- MAKES FLAME YELLOW AND LUMINOUS (THERMAL RADIATION)
- AMOUNTS TO UNBURNT FUEL

4.3.6 SOOT FORMATION (1/2)

- FORMATION FOSTERED IN PRESENCE OF HCs WITH LOW H/C RATIO (AROMATICS)
- (METHANE CH₄ FORMS VERY LITTLE SOOT)
- a) HC SPLITS UNTIL CH IS FORMED, THEN $C_2H_2, C_3H_3, n-C_4H_3, n-C_4H_5$ \rightarrow FORMATION FIRST AROMATIC RING BY REACTIONS: $n-C_4H_3 + C_2H_2 \rightarrow C_6H_5$ $C_3H_3 + C_3H_3 \rightarrow C_6H_6$
- b) HACA MECHANISM (H–ABSTRACTION, C₂H₂ ADDITION) LEADS TO FORMATION OF PAHs:

 $\mathrm{C}_{6}\mathrm{H}_{6}\,+\,\mathrm{H}\,\rightarrow\,\mathrm{C}_{6}\mathrm{H}_{5}\,+\,\mathrm{H}_{2}$

$$\mathrm{C}_{6}\mathrm{H}_{5} + \mathrm{C}_{2}\mathrm{H}_{2} \to \mathrm{C}_{8}\mathrm{H}_{7}$$

 $\mathrm{C_8H_7} + \mathrm{C_2H_2} \rightarrow \mathrm{C_{10}H_8} + \mathrm{H}$

benzene

naphthalene

4.3.7 SOOT FORMATION (2/2)

• ... AND SO ON TO BIGGER PAHs

- D INITIAL PARTICLES ~ 1 nm, THEN AGGLOMERATION UP TO ~ 1 μ m (BY VAN DER WAALS AND ELECTROSTATIC FORCES)
- GROWTH HAMPERED BY OXIDATION BY O_2 AND OH
- → MOST SOOT FORMED IN PRIMARY ZONE, THEN CONSUMED IN INTERMEDIATE AND DILUTION ZONES
 - FORMATION CONTROLLED MORE BY *PHYSICAL* PROCESSES (ATOMIZATION, MIXING THAN *CHEMICAL* ONES

$\begin{array}{l} 4.3.8 \hspace{0.1 cm} \text{EFFECT OF} \hspace{0.1 cm} \varphi, \hspace{0.1 cm} p \hspace{0.1 cm} \text{ON} \\ \text{CONVERSION} \hspace{0.1 cm} \text{C} \rightarrow \text{SOOT} \end{array}$

- SOOT FORMS ONLY FOR arphi > 1,2-1,3
- ALWAYS FORMED IN NONPREMIXED COM-BUSTION $(0 \le \varphi_{local} \le \infty)$
- IN PRINCIPLE, CAN BE TOTALLY ELIMI-NATED IN PREMIXED COMBUSTION...
- ... BUT IN PRACTICE GTs CAN ONLY OPERATE WITH *PARTIALLY* PREMIXED COMBUSTION

Figure 83: Formation of soot in premixed kerosene/air combustion.

4.3.9 EFFECT OF p ON SMOKE EMISSIONS

• INCREASING p_3 WIDENS FLAMMABILITY LIMITS \rightarrow COMBUSTION CAN TAKE PLACE EVEN FOR $\varphi \gg 1 \rightarrow$ SOOTING

215

- IN PRESSURE–SWIRL INJECTORS, REDUCED APERTURE SPRAY CONE (LOCAL φ HIGHER)
- AIRBLAST INJECTORS MUCH LESS SENSITIVE (AND ANYWAY PRODUCE LESS SOOT)

4.3.10 CONTROL OF PRIMARY PARTICULATE

- REMOVAL (IN GROUND PLANTS)
- MODIFICATION OF COMBUSTION PROCESS (φ)
- \rightarrow INTERACTION WITH \mathbf{NO}_{x} AND CO EMISSIONS
 - FINER ATOMIZATION OF DROPLETS:
 - $-\operatorname{IF} D_d$ SMALL, COMBUSTION LOCALLY $\sim \operatorname{PREMIXED}$
 - IF D_d LARGE, COMBUSTION LOCALLY NONPREMIXED ANYWAY
4.3.11 REMOVAL OF PRIMARY PARTICULATE

• IN GROUND PLANTS:

- GRAVITY SETTLERS (GRAVITY)
- CYCLONES (CENTRIFUGAL FORCE)
- ELECTROSTATIC PRECIPITATORS (ESP - ELECTROSTATIC FORCE)
- -**FILTERS**
- SCRUBBERS
- VENTURI SCRUBBERS
- REMOVAL EFFICIENCY DEPENDS ON PARTICLE DIAMETER

4.3.12 EFFECT OF FUEL DROPLET SIZE ON SOOT EMISSIONS

- SMALLER DROPLET SIZE ALLOWS VAPORIZATION BEFORE IGNITION ~ LOCALLY PREMIXED COMBUSTION (LOW φ)
- EFFECT CAN BE OPPOSITE IN PRESSURE– SWIRL DUE TO REDUCED PENETRATION

Figure 85: Effect of fuel droplet size on soot emissions (airblast injector).

4.4.1 VOLATILE ORGANIC COMPOUNDS (VOCs)

219

- VOLATILE LIQUIDS OR SOLIDS CONTAIN-ING ORGANIC CARBON (C BONDED TO C, H, N, S – NOT CaCO₃, CaC₂, CO, CO₂)
- SOME TOXIC, CARCINOGEN (BENZENE C₆H₆, PAH), BUT MOST NOT, OR MILDLY TOXIC
- TAKE PART IN FORMATION OF S/L OZONE, SMOG/SECONDARY PARTICULATE (FINE)
- SOME VOCs ARE ALSO GHGs
- METHANE CH_4 RELATIVELY LITTLE REACTIVE \rightarrow NMVOCs (NON-METHANE VOCs)
- MAIN SOURCES: SOLVENTS, MOTOR VEHICLES
- PAH POLYCYCLIC AROMATIC HYDROCARBONS

4.4.2 FORMATION OF GROUND–LEVEL OZONE

- NO FROM ENGINES OXIDIZED TO NO₂ IN ATMOSPHERE
- REACTION (3) REMOVES NO AND OZONE
- REACTION (2) REQUIRES THIRD–BODY TO SATISFY ENERGY BALANCE; IN (1), ENERGY SUPPLIED BY PHOTON
- IN THE PRESENCE OF VOCs, ADDITIONAL REACTIONS ULTIMATELY RESULTING IN OH + VOC \rightarrow HO₂ + ... (4) NO + HO₂ \rightarrow NO₂ + OH (5)
- (5) REMOVES NO *WITHOUT* CONSUMING OZONE $\rightarrow X_{O_3}$ INCREASES
- e.g., IF (3) ASSUMED IN EQUILIBRIUM AS FIRST APPROXIMATION:

$$K_{p,3}(T) \ = \ rac{p_{NO_2}\,p_{O_2}}{p_{NO}\,p_{O_3}} \ = \ rac{X_{NO_2}\,X_{O_2}}{X_{NO}\,X_{O_3}}$$

 $ullet X_{NO_2} ext{ INCREASES}, X_{NO} ext{ DROPS}, X_{O_2} \simeq ext{const} \ o X_{O_3} ext{ INCREASES}$

4.4.3 FORMATION OF SECONDARY PARTICULATE

- AS AN EFFECT OF PRESENCE OF NO_x , SO_x , VOC, NH_3
- NH₃ FROM BIOLOGICAL SOURCES (LIVESTOCK, AGRICULTURE)
- IN THE PRESENCE OF $NH_3 \rightarrow NH_4NO_3$, $(NH_4)_2SO_4$ IN CONDENSED PHASE
- SIMILARLY, OXIDATION OF VOCs IN ATMO-SPHERE LEADS TO FORMATION OF LESS VOLATILE SPECIES, WHICH THEN CONDENSE

4.4.4 VAPOUR PRESSURE BEHAVIOUR IN AN *OPEN* VESSEL

- $p_v < p_{atm}
 ightarrow ext{SLOW EVAPORATION}$
- $p_v = p_{atm}
 ightarrow {
 m BOILING, WITH RATE DEPENDING}$ ON HEAT BEING SUPPLIED
- $ullet p_v > p_{atm} o ext{VIGOROUS BOILING, COOLING} \ ext{DOWN TO } T: p_v(T) = p_{atm}$

• $p_v = A - \frac{B}{T+C}$ ANTOINE'S LAW

Figure 86: Vapour pressure of some chemical species as a function of temperature.

4.4.5 BEHAVIOUR OF SOME VOCs

• ETHANE C₂H₆, PROPANE C₃H₈, *n*-BUTANE C₄H₁₀: $p_v(T_{ambient}) > p_{atm}$

223

• [Cd, Zn, As, Sb: $p_v(T_{kiln}) \sim p_{atm} \rightarrow \text{SUBSEQUENT}$ CONDENSATION IN FINE *TOXIC* PARTICLES]

4.4.6 DEFINITION OF VOC

224

- \bullet ORGANIC LIQUIDS/SOLIDS SUCH THAT $T_b~<~250~^{\circ}{
 m C}$ at 1 atm
- MOST ORGANIC COMPOUNDS WITH LESS THAN 12 ATOMS C

4.4.7 BEHAVIOUR IN A CLOSED VESSEL

- VOLATILE LIQUID EVAPORATES UNTIL ITS PARTIAL PRESSURE $p_i = p_v(T)$
- $\bullet \ p_i \ = \ X_i \ p$
- IF T INCREASES, p_i INCREASES (THEN TOTAL p AS WELL)

Figure 87: Mechanism of filling losses.

- TANK VENTED TO AVOID OVER/UNDER-PRESSURE
- BREATHING LOSSES RELATED TO EXCURSIONS OF T_{ambient}
- VAPOUR CONSERVATION VALVES (OPEN BEYOND -0,043 $< \Delta p < 0,034 ext{ atm}$)

4.4.9 FLOATING ROOF TANK

Figure 88: Floating roof tank.

4.4.10 CAR TANK REFUELLING

4.5.1 SULFUR OXIDES (SO_x)

- RESPIRATORY IRRITANTS
- FORM SECONDARY PARTICLES
- CAUSE ACID RAIN

• RAISE DEW POINT OF FLUE GAS

4.5.2 SULFUR CHEMISTRY

- OXIDATION S (BY ATMOSPHERIC O_2) \rightarrow $SO_2 \rightarrow SO_3$
 - + ATMOSPHERIC MOISTURE \rightarrow H₂SO₄
 - + ATMOSPHERIC AMMONIA \rightarrow SULFATE PARTICLES $(0.1 - 1 \ \mu m \rightarrow LIGHT \ SCATTERING)$
- $\bullet \ REDUCTION \ S \ (BY \ HYDROGEN) \rightarrow H_2S$
- BACKGROUND CONCENTRATIONS:
 - SULFUR DIOXIDE SO₂ 0,2 ppb
 - AMMONIA NH₃ 10 ppb

4.5.4 EMISSION SOURCES

- FUELS:
 - $-\,\mathrm{WOOD}\,\sim\,0{,}1\%\,\,\mathrm{S}$
 - $-\,\mathrm{GASOLINE}\sim\,0.03\%\,\,\mathrm{S}$
 - $-\,\mathrm{KEROSENE}~(\mathrm{JET}~\mathrm{FUEL})\sim0.05\%~\mathrm{S}$
 - $-\,\mathrm{HEAVY}\ \mathrm{FUEL}\ \mathrm{OIL}\,\sim\,0.5-1\%\ \mathrm{S}$
 - $-\,\mathrm{COAL}\sim0.5-3\%\,\,\mathrm{S}$
- SMELTING OF MINERALS:
 - $ext{CHALCOPYRITE:}$ $ext{CuFeS}_2 + 2,5 ext{ O}_2
 ightarrow ext{Cu} + ext{FeO} + 2 ext{ SO}_2$

4.5.5 SO_x EMISSION CONTROL

• LARGE GROUND PLANTS: EXHAUST GAS TREATMENT

233

• MOBILE SOURCES (CARS, AIRPLANES, ...): USE OF LOW-SULFUR FUELS

4.5.6 DESULFURATION OF HYDROCARBONS

- CATALYTIC HYDRODESULFURATION
- $\bullet \; (\mathrm{HC} + \mathrm{S}) \, + \, \mathrm{H}_2 \rightarrow \mathrm{HC} \, + \, \mathrm{H}_2 \mathrm{S}$
- CATALYST: Ni or Co, PROMOTED WITH Mo or W
- THEN $H_2S + 0.5 O_2 \rightarrow S + H_2O$ (IN ALKALINE ACQUEOUS SOLUTION)
- \bullet CONTROL O_2 FLOW TO AVOID REACTION $H_2S \,+\, 1,5 \,\, O_2 \rightarrow \, SO_2 \,+\, H_2O$

4.6.1 NITROGEN OXIDES (NO_x)

- FORM SECONDARY PARTICULATE, AND INCREASE O_3 CONCENTRATION IN THE PRESENCE OF VOCs (~ HC)
- CAUSE ACID RAIN
- DEPLETE STRATOSPHERIC OZONE
- NO₂ RESPIRATORY IRRITANT (~ 1 ppb IN UNPOLLUTED AIR)
- N₂O GREENHOUSE GAS

4.6.2 NITROGEN CYCLE

Figure 89: Nitrogen fluxes in Gt/year.

4.6.3 EMISSION SOURCES

- VEHICLES (CARS, AIRPLANES,...)
- COMBUSTION PLANTS (COAL-FED IN PARTICULAR)

4.6.4 DIFFERENCES w.r.t. SO_x

- SO_x FORMED FROM FUEL CONTAMINANTS, NO_x FROM ATMOSPHERIC N (MAINLY)
- MOTOR VEHICLES LARGE SOURCE OF NO_x, BUT SMALL OF SO_x
- NO_x FORMATION CAN BE CONTROLLED VIA T, t_s, X_{O_2} (SO_x CANNOT)

4.6.5 ATMOSPHERIC REACTIONS

- NITROGEN MONOXIDE NO COLOURLESS, LITTLE HARMFUL
- NITROGEN DIOXIDE NO₂ BROWN, IRRITANT

239

- NO_x EMITTED AS NO, CONVERTED TO NO₂ AT AMBIENT T
- OFTEN NO_x EXPRESSED AS NO₂
- $\bullet \ NO \ + \ HC \ + \ O_2 \ + \ SUNLIGHT \ \rightarrow \ NO_2 \ + \ O_3$
- OZONE O₃ STRONG IRRITANT

4.6.6 EQUILIBRIUM NO/NO₂

4.6.7 *EQUILIBRIUM* CONCENTRATIONS OF NO AND NO₂

Figure 90: Equilibrium concentration of NO (top) and NO_2 (bottom), at atmospheric pressure.

4.6.8 NO_x FORMATION MECHANISMS

- 1. THERMAL (ZEL'DOVICH)
- 2. PROMPT (FENIMORE)
- **3. FUEL–NITROGEN**
- 4. NITROUS OXIDE N₂O
- 5. OTHERS (NNH, N_2H_3 , NO_2 ,...)
- APPROXIMATE CONCISE EXPRESSION OF PRODUCTION RATE AVAILABLE FOR THERMAL MECHANISM ONLY

4.6.9 THERMAL MECHANISM (ZEL'DOVICH)

- $1. \mathrm{N}_2 + \mathrm{O} \rightleftharpoons \mathrm{NO} + \mathrm{N}$
- $2. \mathrm{N} + \mathrm{O}_2 \rightleftharpoons \mathrm{NO} + \mathrm{O}$
- 3. $N + OH \Rightarrow NO + H$ (EXTENDED ZEL'DOVICH)
- 1. VERY SLOW ($\sim 0.02 \text{ s}$) \rightarrow CONTROLLING, NO FORMED DOWNSTREAM OF THE FLAME
- N BEING FORMED PRODUCES A SECOND NO MOLECULE *VIA* 2. OR 3. (FASTER)
- STEP 3. LESS IMPORTANT (OH CONCENTRATIO RELATIVELY LOW)
- GLOBALLY, $N_2 + O_2 \rightleftharpoons 2$ NO; UNDER APPROPRIATE HPs:

$$w_{NO} = 2,44 \cdot 10^{10} \rho^2 \exp\left(-\frac{38\,370}{T}\right) Y_O Y_{N_2}$$
 (*)

- $w_{NO}~{
 m IN~kg/(m^3~s)},~T~{
 m IN~K},~
 ho~{
 m IN~kg/m^3}$
- MAX w_{NO} FOR $\varphi \sim 0, 8$ (HIGH T, RELATIVELY HIGH Y_{O_2})
- BUT $Y_O \gg Y_{O,eq} \rightarrow$ (*) MUCH MORE ACCURATE

4.6.10 MAXWELL–BOLTZMANN ENERGY DISTRIBUTION AND ACTIVATION ENERGY

IF ACTIVATION ENERGY OF REACTION VERY HIGH

- \rightarrow ONLY A *SMALL* FRACTION OF THE MOLECULES HAVE ENOUGH ENERGY TO TRIGGER REACTION
- \rightarrow REACTION VERY *SLOW* (w_{NO} SMALL)
 - HOWEVER, FRACTION INCREASES WITH T

4.6.11 EFFECT OF TEMPERATURE

245

 $egin{aligned} 0.\ \mathrm{N}_2 + \mathrm{M} &\rightleftharpoons 2\ \mathrm{N} + \mathrm{M} & T_k = E_k/\mathcal{R} = 114\,000\,\,\mathrm{K} \ 1.\ \mathrm{N}_2 + \mathrm{O} &\rightleftharpoons \mathrm{NO} + \mathrm{N} & T_k = & 38\,370\,\,\mathrm{K} \ 2.\ \mathrm{N} + \mathrm{O}_2 &\rightleftharpoons \mathrm{NO} + \mathrm{O} & T_k = & 3\,500\,\,\mathrm{K} \ 3.\ \mathrm{N} + \mathrm{OH} &\rightleftharpoons \mathrm{NO} + \mathrm{H} & T_k = & 69\,\,\mathrm{K} \end{aligned}$

Figure 91: Effect of temperature on reactions potentially involved in Zel'dovich's mechanism.

Figure 92: Growth of thermal NO concentration in products, as a function of residence time.

4.6.13 COMPARISON OF THERMAL NO EQUILIBRIUM/FINITE RATE

• PRODUCTION RATE USUALLY « EQUILIBRIUM

• NO CONCENTRATION 'FROZEN' AS T GOES DOWN (DUE TO SLOW CHEMISTRY)

Figure 93: (left) Assumed temperature variation in time; (right) concentrations of NO computed in equilibrium and under finite–rate chemistry.

• YET, APPROACH OF LIMITING p NOT FEASIBLE (~ SOOT)

4.6.15 PROMPT MECHANISM (FENIMORE)

• IMPLIES FORMATION OF HYDROGEN CYANIDE HCN

249

- IMPORTANT IN ALL HYDROCARBONS
- RELATIVELY FAST (NO FORMED IN FLAME ZONE)
- $\dots \mathbf{C}_{\mathrm{n}}\mathbf{H}_{\mathrm{m}} \rightleftharpoons \mathbf{C}\mathbf{H}_{\mathrm{x}}$
- 4. $N_2 + CH_x \rightleftharpoons HCN + N + \cdots$
- $2. \mathrm{N} + \mathrm{O}_2 \rightleftharpoons \mathrm{NO} + \mathrm{O}$
- 3. N + OH \Rightarrow NO + H
- 5. $N_2 + C_2 \rightleftharpoons CN + CN$
- $\textbf{6. } N_2 + CH_2 \rightleftharpoons HCN + NH$
- 7. HCN + $O_2 \Rightarrow NO + \cdots$

• • •

- ACTIVE IN RICH REGIONS
- IMPORTANT WHEN THERMAL IS DEPRESSED
- \bullet CONTRIBUTION DECREASES AS p RISES
- \rightarrow RELATIVELY UNIMPORTANT IN GAS TURBINES

4.6.16 FUEL–N MECHANISM

- NITROGEN BOUND IN THE FORM OF NH₂, NH₃
- GASOLINE AND KEROSENE CONTAIN < 0,05% BOUND NITROGEN
- HEAVY FUEL OIL FROM 0,5 UP TO A 1,8%
- COAL UP TO 2%
- IMPLIES FORMATION FROM HCN AND NH₃
- 7. HCN + $O_2 \Rightarrow$ NO + · · ·
- 8. $NH_3 + O_2 \Rightarrow NO + \cdots$
- IN COMPETITION WITH
- 9. HCN + NO \Rightarrow N₂ + · · ·
- 10. $NH_3 + NO_2 \rightleftharpoons N_2 + \cdots$
 - FASTER THAN THERMAL MECHANISM
 - TIPICALLY FROM 20% TO 50% OF FUEL–N CONVERTED TO NO
 - UNIMPORTANT IN AERO GAS TURBINES

4.6.17 N₂O MECHANISM

- 11. $N_2O + M \Rightarrow N_2 + O + M$
- 12. $N_2O + O \Rightarrow NO + NO$
- 13. $N_2O + H \Rightarrow NO + NH$
- 14. $N_2O + H \rightleftharpoons N_2 + OH$
- 15. $N_2O + O \Rightarrow N_2 + O_2$
- 16. $N_2O + OH \Rightarrow N_2 + HO_2$
- 17. $N_2O + OH \Rightarrow NH + NO_2$
- 18. $N_2O + OH \Rightarrow NO + HNO$
- 19. $N_2O + H_2O \Rightarrow NH_2 + NO_2$
- 20. $N_2O + H_2O \Rightarrow HNO + HNO$
- $21. N_2O + CO \rightleftharpoons NCO + NO$
 - N₂O PRODUCTION VIA REVERSE STEPS OF 11, 14–16
 - CONVERSION TO NO VIA FORWARD STEPS OF 12, 13, 18, 21
 - BOUND NITROGEN (NH₂, NH₃) DECOMPOSED IN NH, CONVERTED TO N₂O VIA REVERSE STEPS OF 13, 17, 19
 - \bullet CONTRIBUTION INCREASES WITH p
 - N₂O GHG, ODG

Figure 94: Contribution of the different mechanisms to NO formation, as a function of temperature.
4.6.19 COMBUSTION IN GAS TURBINES

• THERMAL MECHANISM DOMINATING (HIGH T)

253

- **PROMPT** MECHANISM RELATIV. UNIMPORTANT
- N₂O MECHANISM ~ 10 15 %

Figure 95: Contribution of different mechanisms to NO_x formation in an aeroengine, under take–off and cruise conditions.

4.6.20 CONTROL OF NO_x EMISSIONS

254

- 1. FORMATION PREVENTION (BY ACTING ON COMBUSTION PROCESS)
- 2. EXHAUST GAS TREATMENT (IN GROUND PLANTS)
 - SCRUBBING HAMPERED BY EXTREMELY LOW SOLUBILITY

4.6.21 TAKING ACTION ON COMBUSTION PROCESS

- REDUCE T, t_s , TIME-AT-TEMPERATURE, X_{O_2}
- TWO–STAGE COMBUSTION (REBURNING)
- (FLUE GAS RECIRCULATION FGR)
- (USE PURE O₂ AS OXIDIZER)
- NO_x REDUCTION GENERALLY IMPLIES INCREASE OF CO AND UHC

4.7.1 CARBON MONOXIDE (CO)

• MOSTLY PRODUCED BY MOTOR VEHICLES

- MAXIMUM CONCENTRATION IN TOWN
- NEAR AIRPORTS, 50% TO 80% EMITTED BY AIRCRAFTS (REST BY VEHICLE TRAFFIC)
- $CO \rightleftharpoons UNBURNT FUEL$

4.7.2 CO CHEMISTRY

- OXIDATION OF HC CARBON TO CO FAST
- OXIDATION OF CO TO CO₂:

 $CO + OH \Rightarrow CO_2 + H$ (RELATIVELY SLOW AT LOW *T* BECAUSE, DESPITE VERY LOW T_k , CONCENTRATION [OH] STRONGLY DEPENDANT UPON *T*)

• STRONG CORRELATION WITH EMISSIONS OF UNBURNT HYDROCARBONS (UHC)

Figure 96: OH *equilibrium* concentration vs. temperature, and associated equivalence ratio, for a kerosene/air reacting mixture at p = 3 MPa, $T_{air} = 850$ K, $T_f = 298.15$ K.

4.7.3 CO EMISSIONS FROM GAS TURBINE COMBUSTORS EFFECT OF φ

• MINIMUM FOR $arphi \sim 0.8$

Figure 97: Typical trend of CO concentration as a function of equivalence ratio, under the assumption of either equilibrium or finite–rate chemistry.

4.7.4 CORRELATION BETWEEN CO AND UHC EMISSIONS FROM GAS TURBINE COMBUSTORS

Figure 98: Correlation between CO and UHC emissions.

4.7.5 CORRELATION BETWEEN CO/UHC EMISSIONS AND COMBUSTION EFFICIENCY FOR GAS TURBINES

Figure 99: Correlations between CO/UHC emissions and combustion efficiency.

4.7.6 EFFECT OF p ON EMISSIONS FROM GAS TURBINE COMBUSTORS

Figure 100: Effect of pressure on UHC/CO emissions from a gas turbine.

4.8.1 INTERRELATION AMONG EMISSIONS OF CO, UHC AND NO_x

- CONTAINING NO_x EMISSIONS DICTATES MODERATE T, OXYGEN SHORTAGE, SHORT RESIDENCE TIMES
- CO OXIDATION TO CO_2 REQUIRES HIGH T, ABUNDANT OXYGEN, LONG RESIDENCE TIMES
- REDUCTION OF UHC EMISSIONS FOLLOWS SAME LINES AS CO
- \implies CONFLICT

Figure 101: NO_x and CO emission indices of a reciprocating engine, as a function of temperature.

• OPERATE IN A NARROW TEMPERATURE RANGE IN ORDER TO OBTAIN ACCEPTABLE EMISSIONS OF BOTH CO AND NO_x

4.8.3 REDUCTION OF EMISSIONS FROM RECIPROCATING ENGINES

- CHAMBERS ~ SPHERICAL TO REDUCE EXTENSION OF LOW T ZONES
- ACCELERATED WARMUP (MOST PART EMISSIONS RELEASED AT START-UP \rightarrow $1-2 \min$ WARMING UP)
- CATALYTIC MUFFLERS

4.8.4 CATALYTIC MUFFLER

- $\bullet \ NO \ + \ CO \ + \ HC \ \rightarrow \ N_2 \ + \ CO_2 \ + \ H_2O$
- CATALYST Pt, Pd, Rh
- A/F CONTROLLED ON THE BASIS OF EXHAUST GAS OXYGEN CONTENT

Figure 102: (left) Honeycomb structure of catalyst support; (right) conversion efficiencies as a function of A/F ratio.

NO_x emissions, gm NO_x/kg fuel

Figure 103: Emission indices of CO and NO_x from gas turbines for different operating conditions.

- IDLE: LOW $T \rightarrow \text{LOW EINO}_{x}$, HIGH EICO
- TAKE–OFF: HIGH $T \rightarrow$ HIGH EINO_x, LOW EICO
- CRUISE: INTERMEDIATE CONDITIONS

4.8.6 CO, NO_x, UHC, SOOT EMISSIONS FROM GAS TURBINES

Figure 104: CO, UHC, NO_x and soot emissions from gas turbines for different operating conditions.

- IDLE: LOW $T \rightarrow$ LOW EINO_x, HIGH EICO, EIUHC; LOW $\varphi \rightarrow$ LITTLE SOOT
- TAKE–OFF: HIGH T, HIGH EINO_x, LOW EICO, EIUHC; HIGH $\varphi \rightarrow$ MUCH SOOT
- CRUISE: INTERMEDIATE; RELATIVELY HIGH T, RELATIVELY LOW $\varphi \rightarrow$ VERY LITTLE SOOT

4.8.7 REDUCTION OF EMISSIONS FROM GAS TURBINES

- (CATALYTIC DEVICE CANNOT BE USED DUE TO PRESSURE DROP, WEIGHT, SIZE)
- WALL CHAMBERS COOLED BY AIRFLOW
- TRY AND CONTAIN RATIO WALL AREA/CHAMBER VOLUME
- ANNULAR COMBUSTORS GIVE LOWER EMIS-SIONS AS COMPARED TO CAN COMBUSTORS (BUT MORE EXPENSIVE)
- MINIMIZE COOLING AIR FLOW RATE \rightarrow TRANSPIRATION COOLING

4.8.8 STAGING

Overall fuel/air ratio

Figure 105: (top) Conventional combustor; (bottom) staged combustor.

4.8.9 φ CONTROL

- φ DETERMINES EMISSIONS
- PREMIXED COMBUSTION IN PRINCIPLE ALLOWS RESTRICTING COMBUSTION TO VERY NARROW φ RANGE \rightarrow LOWER EMISSIONS

270

- BUT PRESENCE PILOT FLAME (*PARTIALLY* PREMIXED COMBUSTION) REDUCES GAIN
- EVEN IF NOMINAL φ CHOSEN SO AS TO MINIMIZE EMISSIONS, DEPARTURES FROM IT CAN GIVE RISE TO STRONG INCREASE EMISSIONS
- DEPARTURES DUE TO:
 - INHOMOGENEITIES (→ IMPROVE ATOMIZATION AND MIXING)
 - TURBULENCE (NEEDED TO ACTIVATE MIXING...)
- φ ANYWAY SPANS FROM ~ 1 IN PRIMARY ZONE, TO ABOUT ~ 0,2 0,3 AT EXIT
- \rightarrow SEARCH FOR A COMPROMISE SOLUTION, ENABLING TO GLOBALLY MINIMIZE EMISSIONS

4.8.10 LPP COMBUSTORS

• LEAN PREMIX–PREVAPORIZER WITH $\varphi = 0.5 - 0.7$

Figure 106: Emission levels of different pollutants from a turbogas combustor as a function of equivalence ratio.

• RICH BURN, QUICK QUENCH, LEAN BURN

Figure 107: NO_x formation rate as a function of φ (top); RQL combustor (bottom).

5.1 ELEMENTS OF ACOUSTICS

- SOUND: PERTURBATION CAUSING VARIATION OF p
- $p = \overline{p} + p'$ PRESSURE (MEAN + FLUCTUA-TION) [Pa]
- $\sqrt{\overline{p'^2}}$ ROOT MEAN SQUARE
- W EMITTED POWER [W]
- I = dW/dA ACOUSTIC INTENSITY $[W/m^2]$
- VALUES OF $\sqrt{\overline{p'^2}}$, *I*, *W* CAN SPAN SEVERAL ORDERS OF MAGNITUDE \rightarrow LOGARITHMIC SCALE

5.2.1 PROPAGATION SPEED

Figure 108: Displacements caused by a wave travelling in a duct (of unit area).

- x ABSCISSA UNDISTURBED PARTICLE, ξ DISPLACEMENT DUE TO WAVE PASSAGE
- MASS CONSERVATION $ho_0 \, \delta x =
 ho \, \left(1 + rac{\partial \xi}{\partial x}
 ight) \delta x$
- ullet CONDENSATION $s=rac{
 hoho_0}{
 ho_0} o
 ho=
 ho_0\left(1+s
 ight)$

$$ightarrow
ho_0\,\delta x \ = \
ho_0\,(1\,+\,s)\,\left(1\,+\,{\partial\xi\over\partial x}
ight)\,\delta x$$

$$ightarrow 1 \ = \ 1 \ + \ s \ + \ rac{\partial \xi}{\partial x} \ + \ s \ rac{\partial \xi}{\partial x}$$

$$5.2.2 \text{ AT FIRST ORDER]}$$

$$\boxed{1} \quad 0 \simeq s + \frac{\partial \xi}{\partial x} \rightarrow s \simeq -\frac{\partial \xi}{\partial x}$$

$$\bullet \text{ ISENTROPIC: } p = p_0 \left(\frac{\rho}{\rho_0}\right)^{\gamma} = \frac{p_0}{\rho_0^{\gamma}} [\rho_0 (1+s)]^{\gamma} =$$

$$= p_0 (1+s)^{\gamma} = p_0 \left[1 + \gamma s + \frac{\gamma (\gamma - 1)}{2} s^2 + \cdots\right]$$

$$\implies p - p_0 = \gamma p_0 s \left[1 + \frac{\gamma - 1}{2} s + \cdots\right]$$

$$\boxed{1} \quad p - p_0 = \gamma p_0 s \Longrightarrow \frac{p - p_0}{\gamma p_0} = s = -\frac{\partial \xi}{\partial x}$$

$$\bullet \text{ MOMENTUM EQ.: } -\frac{\partial p}{\partial x} \delta x = \rho_0 \delta x \frac{\partial^2 \xi}{\partial t^2}$$

$$\rho_0 \frac{\partial^2 \xi}{\partial t^2} = -\frac{\partial (p - p_0)}{\partial x} = -\frac{\partial}{\partial x} \left(-\gamma p_0 \frac{\partial \xi}{\partial x}\right) = \gamma p_0 \frac{\partial^2 \xi}{\partial x^2}$$

$$\bullet \frac{\partial^2 \xi}{\partial t^2} = a_0^2 \frac{\partial^2 \xi}{\partial x^2}$$

$$\bullet \text{ SOLUTION } \xi = \xi^+ (x - a_0 t) + \xi^- (x + a_0 t)$$

5.2.3 FIRST ORDER SOLUTION

$$ullet \, \xi \, = \, \xi^+ (x \, - \, a_0 \, t) \, + \, \xi^- (x \, + \, a_0 \, t)$$

- WAVE TRAVELLING AT SPEED a_0
- CAN BE EXPRESSED IN FOURIER'S SERIES:

$$\xi = \sum_{k} \Bigl\{ \xi^{+}_{max,k} \sin \left[k \left(x - a_{0} \, t
ight)
ight] + \xi^{-}_{max,k} \sin \left[k \left(x + a_{0} \, t
ight)
ight] \Bigr\}$$

(PLUS SIMILAR TERMS IN cosine)

• SAME FOR OTHER QUANTITIES, e.g.,

$$p' = \sum_{k} \left\{ {p'}^{+}_{max,k} \sin \left[k \left(x - a_0 \, t
ight)
ight] + {p'}^{-}_{max,k} \sin \left[k \left(x + a_0 \, t
ight)
ight]
ight\}$$

5.2.4 RELATIONSHIP BETWEEN I AND $\overline{{p'}^2}$

- v VELOCITY FLUID PARTICLE, ξ ITS DIS-PLACEMENT DUE TO PRESSURE WAVE
- WORK $dE = p' dA d\xi$

$$I = rac{dE}{dA\,dt} = p' rac{d\xi}{dt} = p'\,v$$

• FORCE ON AN INFINITESIMAL VOLUME DUE TO $\partial p'/\partial x$

$$egin{aligned} dF &= -rac{\partial p'}{\partial x} dx \, dy \, dz = -rac{\partial p'}{\partial x} dV \ dF &= dm rac{\partial v}{\partial t} =
ho \, dV rac{\partial v}{\partial t} \end{aligned}
ight\} ext{ } o -rac{\partial p'}{\partial x} =
ho rac{\partial v}{\partial t} \end{aligned}$$

• p' FROM SOLUTION WAVE EQ.: SINGLE MODE $p' = p'_{max} \sin(x - a_0 t)$

$$rac{\partial v}{\partial t} = -rac{1}{
ho} rac{\partial p'}{\partial x} = -rac{{p'}_{max}}{
ho} \cos{(x - a_0 t)}$$

$$v = \int \frac{\partial v}{\partial t} dt = -\frac{p'_{max}}{\rho} \int \cos(x - a_0 t) dt = \frac{p'_{max}}{\rho a_0} \sin(x - a_0 t)$$

$$\rightarrow I = \frac{{p'}_{max}^2}{\rho \, a_0} \cdot \overline{\sin^2(x \, - \, a_0 \, t)} = \frac{{p'}_{max}^2}{2 \, \rho \, a_0} = \frac{{p'}_{rms}^2}{\rho \, a_0} = \frac{{p'}_r^2}{\rho \, a_0}$$

5.2.5 SOUND LEVELS

- $L_W = 10 \log_{10}(W/W_{ref})$
- $L_I = 10 \log_{10}(I/I_{ref})$
- $L_p = 10 \log_{10}(\overline{p'^2}/p_{ref}^2) = 20 \log_{10}(\sqrt{p'^2}/p_{ref})$
- MEASURED IN DECIBEL (dB)
- $W_{ref} = 10^{-12} \text{ W}; I_{ref} = 10^{-12} \text{ W/m}^2; p_{ref} = 20 \ \mu \text{Pa}$
- VALUES I_{ref} , p_{ref} CORRESPOND TO WEAKEAST AUDIBLE SOUND LEVEL
- $I = \overline{p'^2}/(
 ho a_0)$
- FOR $ho = 1,225 \text{ kg/m}^3, a_0 = 340 \text{ m/s} \rightarrow I = \frac{{p'}^2}{416}$

$$\overline{p'^2} = 416 I$$

 $p_{ref} = \sqrt{416 \ I_{ref}} \simeq 20 \ \sqrt{10^{-12}} = 20 \ \mu \text{Pa}$

ullet THEN $L_I\simeq L_p$

5.2.6 SUPERIMPOSING SOUNDS

•
$$L_I = 10 \log_{10}(I/I_{ref})$$

•
$$I = I_{ref} \cdot 10^{L_I/10}$$

$$ullet I \;=\; I_{ref} \,\cdot\, \sum_{j=1}^J 10^{L_{Ij}/10}$$

- $L_I = 10 \cdot \log_{10} \sum_{j=1}^J 10^{L_{Ij}/10}$
- DOUBLING THE INTENSITY...

•
$$L_{2I} = 10 \log_{10} \left(2 \frac{I}{I_{ref}} \right) = 10 \log_{10} \left(\frac{I}{I_{ref}} \right) + 10 \log_{10}(2) =$$

 $L_I + 10 \cdot 0,301 = L_I + 3,01 \text{ dB}$

- \rightarrow LOG SCALE: + 3 dB LEVEL
 - LEVEL RESULTING FROM 2 NOISE SOURCES OF 50 dB EACH \rightarrow 53 dB

5.2.7 AUDIBLE FREQUENCIES

• FROM ABOUT 20 TO 20000 Hz

Figure 109: Frequency response of human ear (reference at 1 kHz).

• OCTAVE: RATIO $f_{sup}/f_{inf} = 2$

• 1/3 OCTAVE: RATIO $f_{sup}/f_{inf} = (2)^{1/3} = 1,26$

Figure 110: Range of audible frequencies split into octaves.

5.2.9 dB(A) SCALE

- SOUND LEVELS CORRECTED FOR EFFECT FREQUENCY, AT A *SINGLE* TYPICAL VALUE (WEAK) OF SOUND LEVEL
- SCALE NOT PERFECT, BUT EASY TO MEASURE

Figure 111: Curve of correction factors of scale dB(A).

5.2.10 dB(A), dB(B), dB(C) SCALES

- SENSITIVITY OF HUMAN EAR IS A FUNCTION OF f AND SOUND LEVEL
- WEIGHTING FACTOR FOR TYPICAL NOISE LEVELS:
 - $\circ dB(A) \leftrightarrow WEAK$
 - \circ dB(B) \leftrightarrow INTERMEDIATE
 - $\circ dB(C) \leftrightarrow INTENSE$

• SENSITIVITY OF HUMAN EAR IS A FUNCTION OF f AND SOUND LEVEL INTENSITY

Figure 112: Isonoise curves, and relative response (bottom).

5.2.12 EPN SCALE EFFECTIVE PERCEIVED NOISE

- SOUND LEVEL CORRECTED FOR EFFECT FREQUENCY AND INTENSITY
- ALSO ACCOUNTS FOR PROTRUSION BE-YOND BACKGROUND NOISE, DURATION, TIME EVOLUTION...
- QUANTIFIES ACTUAL NOISE *DISTURBANCE*, RATHER THAN INTENSITY
- EPNdB SCALE ADOPTED FOR EVALUAT-ING AIRCRAFT NOISE
- COMPLEX EVALUTATION: SOMETIMES dB(A) SCALE USED TO HAVE MORE IMMEDIATE INDICATIONS

5.2.13 TYPICAL NOISE LEVELS

• PAIN THRESHOLD AT 140 dB

- \bullet HEARING LOSS STARTING AT DAY–NIGHT– LEVEL $>75~\mathrm{dB}$
- HOUSE DEPRECIATION UP TO 10% FOR NOISE LEVELS 5 – 15 dB > BACKGROUND

5.3.1 NOISE ATTENUATION

• GEOMETRICAL ATTENUATION:

- OMNIDIRECTIONAL SOURCE OF POWER W:

$$egin{aligned} &L_p = L_I \!=\! 10\,\log_{10}\left[rac{W\,/\,(4\,\pi\,r^2)}{10^{-12}}
ight] = \ &= \! 10\log_{10}\!\left(\!rac{W}{10^{-12}}\!
ight)\!\!-\! 10\log_{10}\!(r^2)\!\!-\! 10\log_{10}(4\,\pi)\!\!= \ &= \! L_W \,-\, 20\,\log_{10}\left(r
ight) - \, 11 \end{aligned}$$

• ATMOSPHERIC ATTENUATION:

 $L_p = L_W - 20 \log_{10}(r) - 11 - A_{atm}$

$$A_{atm} = \alpha r$$

- α ATMOSPHERIC ACOUSTIC ABSORP-TION COEFFICIENT, [dB/m], [dB/km] - STRONGLY DEPENDANT UPON FREQUENCY f, T, ATMOSPHERIC HUMIDITY

5.3.2 ATMOSPHERIC ACOUSTIC ABSORPTION COEFFICIENT, [dB/km]

• HIGH f NOISE STRONGLY ATTENUATED:

		central f octave (Hz)							
	relative								
T (°C)	humidity	63	125	250	500	1000	2000	4000	8000
	%								
10	70	$0,\!12$	$0,\!41$	$1,\!04$	$1,\!93$	3,66	9,66	$32,\!80$	$117,\!00$
20	70	0,09	$0,\!34$	$1,\!13$	$2,\!80$	$4,\!98$	$9,\!02$	$22,\!90$	$76,\!60$
30	70	0,07	0,26	0,96	$3,\!14$	$7,\!41$	$12,\!70$	$23,\!10$	$59,\!30$

• EFFECT OF ATMOSPHERIC HUMIDITY:

		central f octave (Hz)							
T (°C)	relative humidity %	63	125	250	500	1000	2000	4000	8000
15	20	0,27	0,65	$1,\!22$	2,70	$8,\!17$	$28,\!20$	88,80	$202,\!00$
15	50	0,14	$0,\!48$	$1,\!22$	$2,\!24$	$4,\!16$	$10,\!80$	$36,\!20$	$129,\!00$
15	80	0,09	$0,\!34$	$1,\!07$	$2,\!40$	$4,\!15$	$8,\!31$	$23,\!70$	$82,\!80$
6.1 NOISE EMISSIONS

• SOURCES:

- ENGINES, PROPELLERS
- AIRFRAME

6.2.1 ACTIONS AGAINST NOISE

- STEEP CLIMB/DESCENT ANGLES REDUCE GROUND AREA SUBJECTED TO NOISE
- IN CASE OF (SINGLE) ENGINE FAILURE, AIRCRAFT (IF CANNOT STOP WITHIN STRIP) MUST BE ABLE TO TAKE-OFF ALL THE SAME
 - \circ 2–ENGINE A/Cs: 100% THRUST RESERVE \rightarrow VERY STEEP CLIMB
 - \circ 3-ENGINE A/Cs: 50% THRUST RESERVE \rightarrow STEEP CLIMB
 - \circ 4–ENGINE A/Cs: 33% THRUST RESERVE \rightarrow LESS STEEP CLIMB

Figure 114: Climb trajectories of twin–, three–, four–engine aircrafts.

Figure 115: Noise relief due to thrust cutback, and reduction of ground area exposed to intense noise (bottom).

• NOISE FROM OLD A/Cs CAN BE LIMITED BY ENFORCING REDUCED TAKE-OFF MASS (SUBSEQUENT REFUELLING IN LESS 'NOISE-CRITICAL' AIRPORT)

6.2.3 INCREASED DESCENT ANGLE

Figure 116: Descent trajectories following different stategies.

6.2.4 APPROACH PATH

Figure 117: Approach path with/without flight over urban areas.

6.2.5 AIRPORT LOCATION

• AIRPORTS FAR FROM CITIES REDUCE NOISE IMPACT

- HOWEVER, LONGER TRANSFER TIMES AND HIGHER COSTS
- \rightarrow URBANIZATION OF AREA NEAR AIRPORTS

Figure 118: Landing at Hong Kong airport.

6.3 NOISE COMPONENTS

- NOISE FROM ENGINES AND AIRFRAME
- TAKE–OFF: ENGINES DOMINATING
- LANDING: AIRFRAME \sim ENGINES

Figure 119: Components of noise perceived at take-off and landing.

6.4 ENGINE NOISE

- GREATLY REDUCED BY TURBOFAN (HIGH BPR IN PARTICULAR)
- \rightarrow REDUCED JET NOISE, BUT INCREASED TURBOMACHINERY NOISE
 - NOISE DIRECTIVITY ALSO AFFECTED

Figure 120: Noise sources of typical engines of the years '60s (left) and '90s (right).

6.5.1 NOISE FROM FAN AND COMPRESSOR (1)

- NOISE: 'DISCRETE TONES' AND 'WIDEBAND'
- WIDEBAND NOISE:
 - GENERATED BY INTERACTION BLADES/TURBULENT FLOW
 - TURBULENCE GENERATED IN BOUNDARY LAYER, AT DISCONTINUITIES, AND AT EACH STAGE
 - e.g., MOTION FAN BLADE TIP IN TURBULENT BOUNDARY LAYER
 - ACOUSTIC POWER \propto (FLOW SPEED)⁵

Figure 121: Typical fan and compressor configuration.

6.5.2 NOISE FROM FAN AND COMPRESSOR (2)

• DISCRETE TONES:

- GENERATED AT PASSAGE BLADES OVER VANES
- B NUMBER ROTOR BLADES, V NUMBER STATOR VANES

Figure 122: Discrete tone geneneration for B exact multiple of V.

6.5.3 NOISE FROM FAN AND COMPRESSOR (3)

Figure 123: Discrete tone generation for B not a multiple of V: (top) case B > V, (bottom) case B < V.

• FUNDAMENTAL FREQUENCY + HARMONICS

Figure 124: Fourier decomposition of a pulse train.

6.5.4 NOISE FROM FAN AND COMPRESSOR (4)

- MODERN FAN CAN OPERATE WITH BLADE TIPS SUPERSONIC \rightarrow SHOCK WAVES NOISE
- BLADES ALL <u>NOMINALLY</u> EQUAL, BUT ACTU-ALLY NOT \rightarrow NOISE SPECTRUM WIDENED

6.5.5 NOISE FROM FAN AND COMPRESSOR (5)

• DIRECTIVITY DUE TO INTAKE GEOMETRY

Figure 125: Effect of air intake on directivity of noise from fan and compressor.

- MEASURES TO CONTROL NOISE:
 - 1. ROTOR/STATOR SPACING (BUT INCREASED WEIGHT)
 - 2. no. B AND V; IF V > 1,1(1 + M) k BMODES OF ORDER k SUPPRESSED (VERY HIGH V)
 - 3. B AND V COPRIME TO SHIFT NOISE TO HIGH f
 - 4. SHIELDING FROM UPSTREAM STAGES
 - 5. AIR INTAKE AERODINAMICALLY 'CLEAN' (NO SLATS, NO BOTTOMING)

6.5.6 CUTOFF

• CUTOFF OF FORWARD NOISE IF $M \ge 1$

• BUT ACTUALLY M NOT UNIFORM ACROSS BLADES (LOWER AT HUB) \rightarrow CUTOFF NOT COMPLETE

SLATS

6.5.7 AIR INTAKE: HAMSTERIZED (BOTTOMING)

Figure 126: *Slats* (left) on the engines of a Boeing 707; (right) 'hamsterized' air intake of a Boeing 737 with CFM56 engines.

Figure 127: Evolution of fan noise control.

6.6.1 TURBINE NOISE

- NOZZLE GUIDE VANES SONIC \rightarrow NOISE PROPAGATED REARWARDS ONLY
- GENERATED BY INTERACTION BLADES/TURBULENT FLOW
- NOISE REFRACTED BY MIXING LAYER ACROSS HOT/COLD FLOW AND ATMOSPHERE
- FOR SAME GAS SPEED, LOWER M (HIGHER T) $\rightarrow V > 1, 1(1 + M)kB$ EASIER TO SATISFY
- ACT ALSO ON STATOR/ROTOR SPACING

Figure 128: Refraction of noise from nozzles.

6.6.2 NOISE REFRACTION

• SOUND SPEED $a = \sqrt{\gamma RT} \propto \sqrt{T}$ • SNELL'S LAW:

Figure 129: Passage of a wave across two media with different sound propagation speed.

6.7.1 JET NOISE

 DUE TO: MIXING (BTWN FLOWS AT DIFFRNT SPEED) SHOCKS (IF OVER/UNDEREXPANDED)
 ALSO REFRACTED

Figure 130: Shocks at exit of underexpanded nozzle.

• MIXING:

- NOISE INTENSITY IN THEORY $\propto u_e^8$ - DEPARTURES AT LOW/HIGH SPEED ($\propto u_e^3$)

 $p_0 \leq p^*$

Figure 131: Intensity level of mixing noise vs. jet speed.

6.7.2 JET NOISE IN TURBOFANS

- IN SEPARATED FLOW TFs, PRIMARY JET HAS:
 - SPEED $\sim 1,5$ \cdot SECONDARY JET
 - $-\,\mathrm{TEMPERATURE}\,\sim\,2-3\,\cdot\,\mathrm{SECONDARY}$ JET
 - TWO MIXING LAYERS (PRIMARY/SECONDARY JET, JET/ATMOSPHERE)

- ASSOCIATED FLOW TFs MUCH QUIETER
- HIGH *BPR* TFs EMIT AT LOWER FREQUENCIES (LARGER SIZE), CAN CAUSE VIBRATIONS OF STRUCTURES AND WINDOWS
- CHEVRON NOZZLES

6.7.3 NOISE SUPPRESSION IN EARLY TURBOJETS

- JET SPLIT INTO SMALLER JETS
- LOWER SIZE SHIFTS NOISE SPECTRUM TOWARDS HIGHER $f \rightarrow$ GREATER ATMOSPHERIC ATTENUATION
- LOSSES DUE TO GREATER INNER AND OUTER DRAG
- WEIGHT INCREASE
- JET NOISE ABSOLUTELY DOMINATING IN EARLY TJs

Figure 132: 21-tube nozzle for Boeing 707 engines (left); 8-lobe corrugated nozzle (right).

6.8 NOISE FROM COMBUSTION CHAMBER

- TURBULENCE IN CHAMBER GENERATES WIDEBAND NOISE
- USUALLY NOT SO IMPORTANT TO REQUIRE CHANGES IN CHAMBER DESIGN

6.9 NOISE FROM THRUST REVERSERS

- USED AT LANDING
- NEARLY AS MUCH NOISE AS AT TAKE-OFF (BUT SHORTER DURATION)

- SOME REVERSE COLD JET ONLY (HIGH BPR IN PARTICULAR; LESS NOISE BECAUSE OF LOWER p)
- IN SOME AIRPORTS ALLOWED ONLY IN AN EMERGENCY, OR SLIPPERY STRIP

6.10.1 ACOUSTIC LINERS

- ACOUSTIC ABSORPTION MECHANISMS: - DAMPING ('RESISTIVE')
 - CANCELLATION BY REFLECTED WAVE ('REACTIVE'), DEPENDING UPON $d \leftrightarrow f$
- CHANCES THAT WATER/FUEL/OIL TRAPPED IN HONEYCOMB
- ATTENUATION ~ 5 dB IN AIR INTAKE, > 10 dB IN EXHAUST DUCTS
- MUST BE ABLE TO OPERATE AT -50 < T < 500 °C, LIGHTWEIGHT
- CAN CONTRIBUTE TO NACELLE STRUCTURAL STIFFNESS

Figure 133: Noise absorption mechanisms by an acoustic liner.

6.10.2 USE OF ACOUSTIC LINERS

\bullet DUCTS POSSIBLY FEATURING A HIGH L/D

Figure 134: Noise reduction opportunities by acoustic liners.

Figure 135: Types of acoustic liners.

Figure 136: Devices for turbofan noise control.

6.12.1 PROPELLER NOISE

- MAINLY DISCRETE TONES (GENERATED BY BLADE PASSAGE)
- WIDEBAND COMPONENT DUE TO TURBULENCE
- INTENSE WHEN M_{tip} CLOSE TO 1 \leftrightarrow CRUISE

$$M_{tip} = \left[M_0^2 + \left(rac{\omega\,D_{propeller}}{2\,a_0}
ight)^2
ight]^{1/2}$$

- INTENSE CABIN NOISE IN CRUISE \rightarrow TFs PREFERRED FOR LONG LEGS
- IN ORDER TO REDUCE NOISE:
 - REDUCE M_{tip}
 - INCREASE BLADE NUMBER N (HIGHER f, LOWER EAR SENSITIVITY, GREATER ATMOSPHERIC ATTENUATION)
 - FOR CONTRAROTATING PROPELLERS:
 - * INCREASE SPACING BETWEEN THE TWO PROPELLER DISKS
 - * USE COPRIME NUMBER OF BLADES

6.12.2 PROPFAN (OPEN ROTOR) NOISE

• HIGH $M_0
ightarrow \mathrm{NOISE}$

• TAIL-MOUNTED, PUSHING PROPELLERS

Figure 137: Propfan with contrarotating, pushing propellers.

6.12.3 PROPFAN PROPELLER

• BLADE SHAPE SIMILAR TO SWEPT WING

6.12.4 PUSHER vs. TRACTOR PROPELLERS

- PUSHER PROS: LOWER INTERACTION PROPELLER WAKE/WING
- PUSHER CONS: GROUND CLEARANCE AT TAKE-OFF, MORE NOISY, ENGINE T

6.12.5 MULTI–ENGINE AIRPLANES

- ALL PROPELLERS MUST ROTATE AT SAME SPEED TO AVOID BEATS
- SYNCROPHASING (SAME PHASE)

6.13 AIFRAME NOISE

- TURBULENT BOUNDARY LAYER
- HIGH–LIFT DEVICES
- UNDERCARRIAGE
- VORTICES AT TRAILING EDGES OF WINGS, EMPENNAGES, FUSELAGE
- BOUNDARY LAYER LAMINARIZATION TECHNIQUES (ALSO REDUCE DRAG)
- UNDERCARRIAGE FAIRING (WEIGHT)

6.14 CABIN NOISE

- TURBULENT BOUNDARY LAYER:
 - $\mathrm{INTENSITY} \propto V_0^{5-6}, \propto p_a^2$
 - MAX AT TAKE–OFF, LOWER IN CRUISE
- NOISE FROM AIR CONDITIONING/ PRESSURIZATION PLANTS
- ENGINE NOISE
- NOISE INCREASES FROM NOSE TO TAIL (BOUNDARY LAYER): 1st CLASS FORE
- SOUND–PROOFING
- ENGINE NOISE PARTIALLY SHIELDED BY WINGS (WHICH HOWEVER INCREASE NOISE RADIATED TOWARDS GROUND)

7.1 SUPERSONIC AIRCRAFT EMISSIONS

• ENVIRONMENTAL IMPACT OF SST (*Super-Sonic Transport*) PARTICULARLY HIGH DUE TO:

- 1. HIGH FUEL CONSUMPTION PER PAX-km \rightarrow CONTAMINANTS AND POLLUTANTS (PLUS COSTS)
- 2. HIGH FLIGHT ALTITUDE (HIGH CONCENTRATION OZONE)
- **3. INTENSE NOISE:**
 - **JET**
 - BANG

7.2.1 FUEL CONSUMPTION

• RANGE

$$s ~=~ rac{Q_f}{g} \eta_o rac{L}{D} \log rac{m_{TO}}{m_L}$$

• FUEL FRACTION:

$$rac{m_f}{m_{TO}} = rac{m_{TO} - m_L}{m_{TO}} = 1 - \exp\left(-rac{s \ g}{\eta_o rac{L}{D} Q_f}
ight)$$

DECREASING WITH $\eta_o \frac{L}{D}$

Figure 138: Typical trend of engine overall efficiency, aerodinamic efficiency, and their product as a function of flight Mach number.

7.2.3 EFFECT OF $\eta_o L/D$

- FOR $M_0 < 3$
- $\rightarrow \eta_o L/D$ LOWER THAN SUBSONIC A/Cs:
 - $-m_f ext{ LARGER}, m_{pl} ext{ SMALLER}
 ightarrow$ HIGHER FUEL CONSUMPTION PER PAX-km

326

- HIGHER EMISSIONS OF GHGs
- HIGHER EMISSIONS OF POLLUTANTS (EINO_x, EICO, EIUHC)
- FOR $M_0 > 3$
- $\rightarrow \eta_o L/D$ HIGHER THAN SUBSONIC A/Cs:
 - HOWEVER, ALUMINUM CANNOT BE USED FOR $M_0 > 2, 4$
 - STEEL OR TITANIUM, HEAVIER (\rightarrow REDUCTION m_{pl}) AND MORE COSTLY

7.3 EFFECT ON OZONE LAYER

- SUPERSONIC A/Cs ATTAIN OPTIMAL L/DAT ALTITUDE HIGHER THAN SUBSONIC
- HIGHER FLIGHT ALTITUDE $z \longrightarrow$ HIGHER OZONE CONCENTRATION \longrightarrow HIGHER DEPLETION

Figure 139: Effect of a SST fleet on stratospheric ozone depletion.

7.4.1 NOISE FROM SUPERSONIC AIRCRAFTS

- 1. u_e VERY HIGH \longrightarrow JET NOISE VERY INTENSE (VARIABLE-CYCLE ENGINES REQUIRED - IN PRINCIPLE)
- 2. SONIC BANG (ON GROUND VERY SMALL Δp e.g., CONCORDE $\simeq 100$ Pa, BUT dp/dt HIGH)
 - SHOCK INTENSITY $\Delta p \propto (M_0^2 1)$ (BUT FUEL CONSUMPTION PER PAX-km HIGH AT MODERATE M_0 , DUE TO $\eta_o L/D$)

$$\begin{array}{l} \hline 7.4.2 \text{ WAVE EQUATION AT SECOND ORDER [2]} \\ \hline 2 & p-p_0 = \gamma \, p_0 \, s \left(1 + \frac{\gamma - 1}{2} s\right) = \rho_0 \, a_0^2 \, s \left(1 + \frac{\gamma - 1}{2} s\right) \\ \bullet \text{ MASS CONS. (EXACT): } s = -(1 + s) \, \frac{\partial \xi}{\partial x} \\ p - p_0 = -\rho_0 \, a_0^2 \, \frac{\partial \xi}{\partial x} (1 + s) \, \left(1 + \frac{\gamma - 1}{2} s\right) = \\ & = -\rho_0 \, a_0^2 \frac{\partial \xi}{\partial x} \left(1 + s + \frac{\gamma - 1}{2} s + \frac{\gamma - 1}{2} s^2\right) \\ \hline 2 & p - p_0 = -\rho_0 \, a_0^2 \, \frac{\partial \xi}{\partial x} \left(1 + \frac{\gamma + 1}{2} s\right) \\ \bullet \text{ MOMENTUM EQ.:} \\ & \rho_0 \frac{\partial^2 \xi}{\partial t^2} = -\frac{\partial (p - p_0)}{\partial x} = \rho_0 \, a_0^2 \frac{\partial^2 \xi}{\partial x^2} \left(1 + \frac{\gamma + 1}{2} s\right) + \\ & + \rho_0 \, a_0^2 \, \frac{\gamma + 1}{2} \, \frac{\partial \xi}{\partial x} \frac{\partial s}{\partial x} \\ \bullet \, \frac{\partial \xi}{\partial x} \frac{\partial s}{\partial x} = s \, \frac{\partial^2 \xi}{\partial x^2} \\ \Rightarrow \, \frac{\partial^2 \xi}{\partial t^2} = a_0^2 [1 + (\gamma + 1) s] \frac{\partial^2 \xi}{\partial x^2} \begin{array}{c} \text{POSITIVE PEAKS} \\ \text{TRAVEL FASTER} \\ \text{THAN NEGAT. PEAKS} \end{array}$$

329

Figure 140: Deformation of wave shape.

Figure 141: Ideal N-wave (top) and real one (bottom).

Figure 142: Wave front and shock conoid.

- $\bullet \ \phi$ ANGLE BTWN BANG RAY AND HORIZONTAL
- SNELL'S LAW: $\frac{\sin \theta_1}{a_1} = \frac{\sin \theta_2}{a_2} \rightarrow \begin{array}{c} \text{FOR LEVEL} \\ \text{FLIGHT} \rightarrow \end{array}$ $\rightarrow \frac{\cos \phi_1}{a_1} = \frac{\cos \phi_2}{a_2} \implies \cos (\phi_2) = \frac{a_2}{a_1} \cos (\phi_1)$ • $\phi_2 < \phi_1 \text{ IF } a_2 > a_1, \quad \phi_2 > \phi_1 \text{ IF } a_1 > a_2$

Figure 143: Interaction of conoid with the ground.

7.4.6 MAX DEFLECTION OF BANG RAYS

• μ MACH CONE ANGLE:

$$\sin{(\mu)}~=~rac{1}{M}$$

$$ullet \phi \ = \ rac{\pi}{2} - \mu \longrightarrow \cos{(\phi)} \ = \ \sin{(\mu)} \ = \ rac{1}{M}$$

- $ullet \cos\left(\phi_2
 ight) \ = \ rac{a_2}{a_1}rac{1}{M}$
- $\phi = 0$ CAN BE ATTAINED ONLY IF $M_0 < \frac{a_{S/L}}{a_0}$

 $(=1,15 \text{ FOR ALTITUDES } 11000 \leq z \leq 20000 \text{ m})$

• ADDITIONAL EFFECTS OF WIND, LATERAL TEMPERATURE GRADIENTS,...

7.4.7 EFFECT OF GROUND REFLECTION

Figure 144: Effect of ground reflections.

Figure 145: Effect of reflections on the ground and on vertical walls.

7.5.1 FURTHER PROBLEMS OF SSTs

- LARGE SENSITIVITY TO INCREASE OF TSFC OR m_e
- FLIGHT STABILITY WITH VARYING M_0 (VARIABLE GEOMETRY)
- PRESSURE CENTRE SHIFTS REARWARD AS M_0 IS INCREASED

7.5.2 COMPENSATION OF PRESSURE CENTRE SHIFT – XB–70

Figure 146: (top) XB–70 at take–off; (below) wing tips dropping at altitude.

7.5.3 COMPENSATION OF PRESSURE CENTRE SHIFT – CONCORDE

Figure 147: Compensation of pressure centre shift in the Concorde.

7.5.4 ALTERNATIVE CONFIGURATION

Figure 148: Straight wing configuration of a supersonic business jet.

\rightarrow LARGER STRUCTURAL MASS, LIMITED M_0

7.5.5 EXPOSURE TO COSMIC RAYS

- MEASURED IN Sievert (Sv): $D \cdot Q$
- D DOSE: ENERGY PER UNIT BODY MASS, J/kg
- Q QUALITY FACTOR: 1 FOR PHOTONS/ELECTRONS 10 FOR NEUTRONS, 20 FOR α PARTICLES
- NATURAL BACKGROUND DOSE $\sim 2.4 \text{ mSv/a}$
- COSMIC RAY INTENSITY DEPENDS ON ALTITUDE, LATITUDE, SOLAR ACTIVITY
- FLIGHT DOSES:
 - SHORT RANGE A/Cs: $1 3 \mu Sv/h$
 - LONG RANGE A/Cs: 5 μ Sv/h
 - CONCORDE: $12 15 \ \mu Sv/h$
- CREW ANNUAL EFFECTIVE DOSE:
 - LONG RANGE A/Cs: 2,1–4,6 mSv/a (700 h/a)

8.1 UNCONVENTIONAL CONFIGURATIONS

• INTENDED TO:

- INCREASE L/D AND/OR DECREASE WEIGHT

340

- \rightarrow LESS POWERFUL ENGINES
- \rightarrow LOWER EMISSIONS OF POLLUTANTS AND NOISE

– SHIELD NOISE RADIATED TOWARD GROUND

8.2.1 MULTIFUSELAGE CONFIGURATIONS

- REDUCE WING LOAD → WEIGHT; EASIER EMERGENCY EVACUATION
- GREATER DRAG; LANDING PROBLEMS WITH ONE ENGINE OFF

Figure 149: Multifuselage configurations.

8.2.2 COMPARISON OF CONFIGURATIONS WITH 1 AND 2 FUSELAGE(s) (1)

Figure 150: Distribution of lift, mass and bending momentum in configurations with single fuselage (left) and two fuselages (right).

8.2.3 COMPARISON OF CONFIGURATIONS WITH 1 AND 2 FUSELAGE(s) (2)

• TWO MODIFIED AIRBUS 318 FUSELAGES

Figure 151: Configuration with engines mounted in between fuselages to reduce ground noise.

design mass, kg	conventional	2-F	Δ%
MTOW	155,000	134,000	-13.5
MLW	128,000	113,000	-11.7
MZFW	120,000	106,000	-11.7
OEW	84,000	70,000	-16.7
payload (struct. limit)	36,000	36,000	0
block fuel (8,000 km)	40,715	34,245	-15.9
installed thrust, kN	2×222.5	2×178.0	-20.0

Figure 152: Comparison of masses and thrust in configurations with single and two fuselage(s).

8.2.4 SPAN–LOADER CONFIGURATION

• WING LOAD REDUCED \rightarrow WEIGHT

• 'VIRTUAL WINDOWS' FOR REAR SEATS

• LIMIT: FLYING WING

Figure 153: Span–loader configuration.

8.2.5 OPTIMAL SPLITTING OF VOLUME BETWEEN WINGS AND FUSELAGE

- e.g., BOEING 747: 18% VOLUME IN WINGS, 82% FUSELAGE
- LIMIT SPAN-LOADER: *FLYING WING* (100% VOLUME IN WING)

Figure 154: Wing–fuselage combinations with same total volume.

Figure 155: L/D ratio as a function volume fraction allotted to wings.

8.2.6 PRANDTL WING CONFIGURATION

- MINIMUM INDUCED DRAG
- HORIZONTAL TAILPLANE ELIMINATED \rightarrow REDUCED WEIGHT AND DRAG
- REDUCED WINGSPAN
- STRESS CONCENTRATION
- CABIN NOISE

Figure 156: Prandtl wing configuration.

8.2.7 OBLIQUE FLYING WING CONFIGURATION

- ENABLES ADAPTING SWEPT–WING ANGLE TO FLIGHT SPEED
- ROTATION ENGINES AND EMPENNAGES

Figure 157: Oblique flying wing configuration.

• REDUCED AERODYNAMIC DRAG THANKS TO HIGHER ASPECT RATIO $AR = S/b^2$

Figure 158: Increase of effective wingspan; possible use in two operating conditions (top).

8.2.9 EFFECT OF NO. AIRCRAFTS IN FORMATION

• HOWEVER:

- OPERATIONAL COSTS MULTIPLIED
- HIGHER RISK OF COLLISION
- POSSIBLY CONVENIENT FOR FLIGHTS TO CLOSE DESTINATIONS, e.g.:

 $\begin{array}{rl} \text{ROME} \rightarrow & \begin{array}{l} \text{NEW YORK} \\ \text{BOSTON} \\ \text{WASHINGTON} \\ \text{PHILADELPHIA} \end{array}$

8.3.1 OWN AND RFN CONFIGURATIONS

• NOISE RADIATED TOWARDS GROUND SHIELDED

- OWN: MORE INTENSE CABIN NOISE
- RFN: LARGER WEIGHT

Figure 159: Over the Wing Nacelle configuration.

Figure 160: Rear Fuselage Nacelle configuration.

8.3.2 BLENDED WING-BODY CONFIGURATION

- REDUCES WING LOAD \rightarrow WEIGHT
- DOWNWARD NOISE SHIELDED
- MUCH REDUCED WINDOWS
- EMBEDDED CONFIGURATION QUIETER, BUT FLOW DISTORTED, LOWER ϵ_d , VERY CLOSE INTEGRATION ENGINE/AIRFRAME

Figure 161: Blended wing–body configuration.

8.3.3 CANARD CONFIGURATION

FAN NOISE TOO SHIELDED (w.r.t. RFN) CONTROL MORE PROBLEMATIC

Figure 162: Canard configuration.

8.3.4 ENGINE OVER FUSELAGE CONFIGURATION

- DOWNWARD NOISE SHIELDED
- WORSE PATTERN FACTOR

Figure 163: EOF configuration.

8.3.5 QUIET SUPERSONIC A/C CONFIGURATION

• TURBOFAN ENGINES AT TAKE-OFF/LANDING, TURBOJETS IN CRUISE

• MECHANICALLY COMPLEX

Figure 164: Supersonic aircraft with retractable engines.

8.4 FLATBED CONFIGURATION

- REDUCED BOARDING/DISEMBARKMENT TIME
- SLIGHTLY NEGATIVE EFFECT ON EMISSIONS DUE TO INCREASED WEIGHT

Figure 165: Flatbed configuration.

8.5.1 HYDROGEN–FUELLED A/Cs

• LOWER EINO_x ~ 4.3 g/kg_f THANKS TO WIDER FLAMMABILITY RANGE

- HYDROGEN: ~ 3 TIMES AS MUCH ENERGY AS Jet-A PER UNIT MASS, BUT ONLY 0.26 PER UNIT VOLUME \rightarrow LARGER, HEAVIER TANKS
- ZERO CO_2 AND SOOT \rightarrow NO CONDENSATION OF ATMOSPHERIC UMIDITY
- HOWEVER, HYDROGEN IS MERELY AN ENERGY *CARRIER*, NOT A SOURCE

8.5.2 HYDROGEN TANK LOCATION

• TANK ABOVE CABIN TO MINIMIZE CONSEQUENCES OF LEAKS

Figure 166: Airbus' Cryoplane.

- CURRENT LH PRODUCTION $\ll 1\%$ OF WHAT NEEDED
- *LONG* TIME TO BUILD INFRASTRUCTURES

• COST-EFFECTIVE FOR LONG-RANGE FLIGHTS

8.5.4 IN-FLIGHT REFUELLING (2)

• ACCOUNTING FOR TANKER FUEL CON-SUMPTION:

nmi	3000	6000	9000
km	5556	11112	16668
airliner fuel consumption	13412	35124	85113
ior direct night (kg)			
airliner fuel consumption			
with in–flight refuelling		26825	40237
$every \ 3000 \ nm \ (kg)$			
tanker(s) fuel		1500	3000
consumption (kg)			
overall		28325	43237
fuel consumption (kg)			
fuel mass		10 9607	49,20%
saving		19,0070	

OPPORTUNITIES AND CHALLENGES FOR ELECTRIC PROPULSION OF AIRLINERS

- OUTLINE:
- 1. INTRODUCTION
- 2. DEDICATED AIRFRAME
- 3. OPTIONS
- 4. RANGE
- 5. OTHER LIMITATIONS
- 6. CONCLUSIONS

Dyson 2017

SAPIENZA

Università di Roma
1a. INTRODUCTION

- AVIATION CONTRIBUTES ~ 2.5% TO GLOBAL CO_2 EMISSIONS
- CONTRAILS ADD ~ 1.1%
- TOTAL CONTRIBUTION TO RADIATIVE FORCING ~ 4.9%
- STATOSPHERIC OZONE DEPLETION BY NO_x
- AIR TRAFFIC GROWING AT ~ 5%/year
- \rightarrow URGENT ACTIONS NEEDED TO CURB EMISSIONS

Adventure Aviation

1b. AVENUES TO REDUCE EMISSIONS

- BIOFUELS: NO NET CO₂ EMISSIONS, BUT SUPPLY 1% OF DEMAND USING 1% OF ARABLE LAND
- FURTHER, DEDICATED CULTIVATIONS EMIT N₂O (GHG, ODG)
- HYDROGEN-FUELLED AIRCRAFTS
- ELECTRIC AVIATION

2a. NEED FOR DEDICATED AIRFRAMES

- ELECTRIC ENGINES NOT A DROP-IN REPLACEMENT FOR EXISTING ENGINES
- BOUNDARY LAYER INGESTION: REDUCED DRAG, IMPROVED PROPULSION EFFICIENCY
- TIP SWIRLERS
- DISTRIBUTED PROPULSION: SAFER OEI, HIGHER LIFT \rightarrow LOWER $S_{wing} \rightarrow m_{TO} \rightarrow m_{fuel} \rightarrow$ etc.

Ampere, ONERA

TU München

Opportunities and challenges for electric propulsion of airliners

2b. DISTRIBUTED PROPULSION A NECESSITY

• 1 MW ELECTRIC MOTOR DRIVING A FAN WITH PRESSURE RATIO 1.25 GENERATES ONLY ~ 6 kN THRUST AT TAKE-OFF

• FURTHER, PRANDTL WING \rightarrow HIGHER *L/D*

Lockheed, conventional

NASA, electric

Opportunities and challenges for electric propulsion of airliners

page 5/16

3. OPTIONS FOR ELECTRIC AIRCRAFT

ALL-ELECTRIC AIRCRAFT (AEA) TURBO-ELECTRIC AIRCRAFT (TEA) HYBRID-ELECTRIC AIRCRAFT (SERIAL/PARALLEL) (HEA)

• DIRECTLY RELATED TO BATTERY SPECIFIC ENERGY (Wh/kg) • AI-AIR and Li-AIR STILL FAR FROM EIS

Jet Fuel
Li-air
Al-air
Li-ion (2022)
Li-ion (2018)
0 2000 4000 6000 8000 10000 12000 e _b [Wh/kg]

4b. RANGE FOR ALL-ELECTRIC AIRCRAFT (AEA)

INCLUDING ½ HOUR RESERVE
 WITH PRESENT-DAY TECHNOLOGY, NO MORE THAN ~ 1000 km

4c. POSSIBLE MARKET/FUEL SHARE OF AEA

← MARKET SHARE OF SHORT-HAUL A/Cs ~ 1.7%

FUEL CONSUMPTION SHARE ~ 10% ↓

40% of fuel use in 150-210 pax large single-aisle class 87% of fuel use in small single-aisle and larger classes (>100 pax) 13% of fuel use in regional jet and turboprop classes

Boeing 2018

Opportunities and challenges for electric propulsion of airliners

page 9/16

4d. CONS OF AEA FOR SHORT-HAUL FLIGHTS

- RELATIVELY LONG RECHARGE TIME \rightarrow ADVERSE ECONOMIC IMPACT
- CAN BE SHORTENED, BUT AT THE EXPENSE OF BATTERY LIFE

4e. TURBO-ELECTRIC AIRCRAFT (TEA)

- GAS TURBINE \rightarrow ALTERNATOR \rightarrow ELECTRIC MOTOR \rightarrow FAN
- REDUCED η_{th} , HIGHER $\eta_p \rightarrow$ SLIGHTLY IMPROVED η_o (~7%)
- SMALL EFFECT ON CO₂ EMISSIONS, UNLESS...
- USING HYDROGEN AS A FUEL

4f. TEA: HYDROGEN-FUELLED AIRCRAFT

- GAS TURBINE \rightarrow ALTERNATOR \rightarrow ELECTRIC MOTOR \rightarrow FAN
- NO CO₂, GREATLY REDUCED CONTRAILS AND NO_x
- HYDROGEN GIVES 2.8-SPECIFIC ENERGY JET FUEL (Wh/kg), BUT ONLY 0.26-ENERGY DENSITY (Wh/m³)→
- LARGE, HEAVY TANKS \rightarrow DRAG
- SUPERCONDUCTIVITY \rightarrow IMPROVED ELECTRICAL η
- DIFFICULT WITH DISTRIBUTED PROPULSION
- VERY FAST PROPAGATION POSSIBLE ELECTRIC FAULTS

AIRBUS CRYOPLANE (conventional)

Opportunities and challenges for electric propulsion of airliners

4g. HYBRID ELECTRIC AIRCRAFT (HEA)

- ELECTRIC POWER MAY BE USED TO DRIVE FANS TO ASSIST TAKE-OFF (AND CLIMB)
- REDUCED WING AREA \rightarrow WEIGHT \rightarrow THRUST \rightarrow FUEL \rightarrow etc.
- SPECIFIC POWER CONTROLLING (TAKE-OFF)

5a. OTHER LIMITATIONS OF ELECTRIC AIRCRAFTS

- BATTERY VOLUME ENERGY DENSITY ~ 1/10 OF JET FUEL \rightarrow WEIGHT \rightarrow THRUST \rightarrow ENERGY \rightarrow etc.
- RISK FIRES (BOEING 787)
- 10 20% BATTERY CHARGE RELEASED AS HEAT \rightarrow RADIATORS \rightarrow WEIGHT, DRAG \rightarrow etc.

5b. COST ELECTRIC ENERGY AND BATTERIES

• **COST kWhe +** <u>*COST ELECTRIC BATTERIES per kWhe*</u>

no. of cycles

- e.g., 0.03 + 100/1000 = 0.13 » COST JET-A1
- PLUS EFFICIENCIES, DISPOSAL/RECYCLING EXHAUSTED BATTERIES

← Brelje 2019 multipy by 3.6 to get units of \$/kWh

Opportunities and challenges for electric propulsion of airliners

6. CONCLUSIONS

- PRESENT TECHNOLOGY \rightarrow
- \rightarrow LIMITED RELIEF ENVIRONMENTAL IMPACT
- \rightarrow AEAs MORE COSTLY
- HYDROGEN-FED TEAS GIVE NO CO₂, VERY LITTLE CONTRAILS AND NO_x, BUT ...
- DECADES NEEDED TO BUILD INFRASTRUCTURES
- HYDROGEN PRODUCED BY RENEWABLES
- REQUIRE DECISE POLICY SHIFT

8.6 PUT EVERYTHING IN PROPER CONTEXT...

360