
Si assuma (indipendentemente dal tipo di velivolo esaminato nelle precedenti esercitazioni) che: **a**)-la seguente figura rappresenti il cassone alare della sezione a distanza $x \cong c = b/\lambda$ (dove b,λ sono i valori da Voi scelti nell'esercitazione⁽¹⁾ N.1);

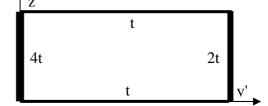
b)–le pareti siano dello stesso materiale ma abbiano spessori differenti con t=2,5 mm;

c)—la sezione sia soggetta ad un momento flettente M=1,25M (dove M è il valore del momento da Voi calcolato nell'esercitazione⁽¹⁾ N.2 alla sezione posta ad una distanza dalla radice x \cong c) che agisce su un piano inclinato di $\phi_{v'}$ =80° rispetto all'asse orizzontale y';

d)-la sezione sia soggetta ad una forza tagliante $T_z=T$ (dove T è il valore del taglio da Voi calcolato nell'esercitazione⁽¹⁾ N.2 alla sezione posta ad una distanza dalla radice x = c) applicata in z'=h, y'=0.

e)—la sezione sia soggetta ad una forza tagliante $T_y=0.25\ T$ (dove T è il valore del taglio da Voi calcolato nell'esercitazione⁽¹⁾ N.2 alla sezione posta ad una distanza dalla radice x = c) applicata in z'=h/2, y'=0.

Si riportino, sulla base di quanto detto, i valori numerici e relativa unità di misura, delle grandezze:


 $c = \qquad \qquad b = \qquad \qquad h = \\ M = \qquad \qquad T_z = \qquad \qquad T_v =$

1)-Volendo valutare lo stato di tensione conseguente alla sollecitazione di flessione:

1a)—si traccino nella figura gli assi del sistema di riferimento scelto per il calcolo, assegnandogli un nome ed indicando nel sistema y'z' il valore delle coordinate della loro origine:

1b)—si tracci nella stessa figura l'asse neutro indicando la

sua inclinazione rispetto al sistema di assi scelto in 1a):

1c)—si scriva l'espressione analitica ed il relativo valore delle componenti del momento flettente

assegnato in c) intorno al sistema di riferimento scelto in 1a).

¹ Chi non avesse svolto le Eserc. N.1 e N.2 assuma i valori delle rispettive esercitazioni svolte disponibili sul sito.

Matr.....

1d)-si scriva, nel sistema di riferimento scelto in 1a), l'espressione analitica per il calcolo delle tensioni conseguenti alla sollecitazione di flessione.

1e)-si riporti il valore delle tensioni, con relativa unità di misura, calcolate con la precedente

formula nei punti indicati in tabella

Punto	y'	z'	σ	Punto	y'	z'	σ
1	0	0		5	b	h	
2	b/2	0		6	b/2	h	
3	b	0		7	0	h	
4	b	h/2		8	0	h/2	

1f)–Si disegni il diagramma delle σ .

7	6	5
8		4
1	2	3

2)-Volendo valutare lo stato di tensione conseguente alla sollecitazione di taglio

2a)—Si scriva la formula per il calcolo del flusso di taglio nel sistema di riferimento scelto in 1a):

q=

2b)-Qualora nel secondo membro della precedente formula siano presenti una o più incognite si indichi il modo e le eventuali espressioni analitiche che ne consentono il calcolo.

2c)—Assumendo a titolo semplificativo $T_y = 0$, si scrivano i valori del flusso di taglio, con relativa unità di misura, nei punti indicati in tabella.

Punto	y'	z'	q	Punto	y'	z'	q
1	0	0		5	b	h	
2	b/2	0		6	b/2	h	
3	b	0		7	0	h	
4	b	h/2		8	0	h/2	

2d)-si disegni l'andamento dei flussi di taglio con i relativi versi nelle varie pareti.

7	6	5
8		4
1	2	3