Discrete Systems

Machine Design (2013-2014)

The Finite Element Method
Discrete system: definition

A discrete structure is a mechanical system where parts are connected by discrete
nodal points.

Boundary conditions, as well as concentrated loads, are applied on nodes. Possible
distributed loads (surface, mass loads) are applied on elements, also.

This class of problems can be solved
by matrix structural analysis, both for

isostatic and hyperstatic
configurations.

In particular, it is possible to find the
equilibrium configuration

(displacement field), reactions (forces
and moments on constraints), and
stress and strain state in the single
parts..

All quantities can be expressed as a
function of nodal displacements.
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The Finite Element Method
Discrete system: 2d example
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The Finite Element Method
Discrete system: 2d example
Loads acting on a single part
: QQ&N .
A\
B)

Distributed

7‘C0ncentrated nodal load
loads oads

Initial element strain, due to
temperature change

Element equilibrium relation:
Ff=IKFldf+{FL+{F
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The Finite Element Method
Discrete system: single element, general case

Element equilibrium relation:

Ff=[KFdP +{F 5 +{F L
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a a Nodal load vector which gives rise to a
F }d [ ] { } the elastic nodal displacements: {d }
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Nodal load vector needed to balance distributed loads
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The Finite Element Method
Discrete system: 2d link element example

2d link element, of uniform cross section A, and length L. Elastic material: E,v. Reacts
to tension-compression, due to concentrated loads at nodes. Temperature variations
possible within the element.

Link length

L =04 =)+ (¥, = %)’

Angolo formato dall’asta con
I'asse delle ascisse
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The Finite Element Method
Discrete system: 2d link element example

Equilibrium relation:

Fi=[KF " +{F )

Nodal forces needed to prevent deformation due to

temperature variations F
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The Finite Element Method
Discrete system: 2d link element example

Equilibrium relation:
FY =[kMd) +{F ),

Nodal displacements
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Link elongation

AL = (u; —u;)cosa+(v; —v;)sina

Machine Design (2013-2014)

3/25/2014



The Finite Element Method
Discrete system: 2d link element example

Equilibrium relation:
FY =[KMd)+{F ),

Axial force causes a link elongation AL

Fo= A-E-A—I_Lz%[(uj —u;)cosa+ (v, —vi)sina]
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The Finite Element Method
Discrete system: 2d link element example

Equilibrium relation:

P =K +{F

U, = —(+ u,c’ +v,sc —u,c? —vjsc)
L
EA ) 2
EA s=sina
Uu =—

J (uc?—visc+u,c?+vsc)
L J J

A
V, = == (- u;sc —v,;s? +u,5¢ + v 5?)
L
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The Finite Element Method
Discrete system: 2d link element example

Equilibrium relation:

P =[KF " +{F

Previous expressions may be rearranged in a matrix form:

a
2 s¢ -—c* -—scC

l’Ii
e EA| sc s* —sc —s*| |V
“TL|-¢? -s¢ & sc ||y
-sc —-s* s¢c s* ||V

C

{F

[K] is symmetric, due to energy conservation principle
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The Finite Element Method
Discrete system: 2d link element example

Equilibrium relation:

Ff=[KFdP +F 5 +{F L

a
c® sc —-c® -sC

2
{F}a:E sc s -—sc -sS {d}a+EaAT

L|-c® -sc ¢ sc
—sc —-s> sc S

State of stress and strain: E
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The Finite Element Method
Discrete system: 2d link element example

Equilibrium relation modification, «enhanced» link with distributed loads:

Ff=[KFdP +F 5 +{F L

Nodal forces which balance the distributed load: j
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The Finite Element Method
Discrete system: single element, general case

Element equilibrium relation:

a a a a
{F} = [K]a{d } + {F }p + {F }50 m = number of nodes in
the element
| = number of degrees of
= freedom of a single node
a a i1
3 Al el
. Fi
a a load and displacement vectors:
{F} =1F {d} =14, d mx | elemenpis
i1
' {di} =
Fm dm d|I

Generalized load and displacement vector components: they can be moments
and rotations also.
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The Finite Element Method
Discrete system: single element, general case

Element equilibrium relation:

Ff=[KFdP +{F 5 +{F L

| = degrees of freedom
of a single node

Kll Kli Klm
. " B h Kij, Ki,
[K] = Kil o Klj . Kim [Kij]: .
iy Kiju
K1 ij Kim

[K]a Element stiffness matrix, ml x ml elements
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The Finite Element Method
Discrete system: structure assembly and resolution

Discrete system static solution: equilibrium imposed on each node of the
structure. This leads to a system of equations (linear for the elastic problem), with
nodal displacements as unknowns. Solved it, also reactions, state of stress and
state of strain can be retrieved. Solution is available at nodes, and in any point of
the elements.

Structure external load vector and displacement vector

R, d, |
R n = number of nodes
B ®) 1 - in the structure
Ri={R} & ldl=1d
R, | = number of degrees
R ; of freedom of a single
" d, node
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The Finite Element Method
Discrete system: structure assembly and resolution

Equilibrium condition, i-th node of the structure: Sum of external forces and of forces
coming from adjacent elements must be zero.

RJ=THF oo ~ZHET +{R=0)

a
All elements should be included, not only the neighbouring ones, (non concurring
elements give a null contribute).

Element stiffness matrix and element vectors should be expanded to structure
dimension for computations.

R’ £’
K, .. K, . .
Kf=| - (o7 xnt]) (Ff=1F {FY =1F
K, .. K,
FJ, F
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The Finite Element Method
Discrete system: structure assembly and resolution

Equilibrium condition, i-th node

wi-5[ ST Srp- S-Sl ezt T

a

Equilibrium condition of all nodes of the structure, matrix notation:

Ry= Kl j+ 1, +1F},

[Kij]: ZGZ[KU]“
W, =205

[K] structure stiffness
matrix

n.b. [Kij]a¢0 i jea

expanded to structure

" . dimension
Ry, =2 ARS
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The Finite Element Method
Discrete system: resolution

System of nxl linear equations, with nxl unknown nodal displacements

Kl = Rj—{F 5, 1},

To be solved by sparse matrix linear algebra algorithms

Note:

- Equilibrium cannot be found unless enough constraints are imposed, that is, the
above system is underdetermined. Analitically, this means that the stiffness matrix
[K] is singular.

- Boundary conditions impose zero (or fixed) displacements on selected nodes.
Reactions arise as a consequence, relative to the constrained degrees of
freedom. These can be determined once the unknown displacements have been
computed.
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The Finite Element Method
Discrete system: resolution example

2d example: solution steps

1: Element connectivity identification.

Elements Connecting nodes
a 1,2,3
b 2,4
c 3,5
d 4,56

2: Identification of the elastic properties of every element: E , n.
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The Finite Element Method
Discrete system: resolution example

3: Computation of element stiffness matrices [K] and of concentrated loads equivalent to
distributed loads and to effects of initial strain {F}; , {F} for each element: this allows to

calculate the element equilibrium relation: {F }a _ [K]a{ } {F }a + {F }ao
p &

4: Use of transformation matrices to refer all quantities to a single global reference
system.

5: Expansion of element stiffness matrices to structure dimension, prior to their
assembly into the structure stiffness matrix.

000 o 00
oo ol o oo
0 NEEED N ol ol ], s = d?. .

It is usually a banded matrix
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The Finite Element Method
Discrete system: resolution example

6: Expansion to structure dimension of: F a F}:
0

e
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I
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7: Assembly of the equilibrium relation of the structure:

K= R)=1F}, - {F},

External concentrated loads and reaction are in {R} the distributed ones in {F }p while
constraint are seen as knwown components of {d } If the problem is elastic, the above
expression represents a linear system of equations with {d} as unkwnown.
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The Finite Element Method
Discrete system: resolution example

8: Modification of the system due to constraints (deletion of selected rows and columns
of the system.

9: Solution of the linear system in 7, through linear algebra techniques. Displacement
vector {d} is then determined. Afterwards, also constrain reactions may be found.

10: Given {d} also the, displacement, stress and strain field {a}, {g} within the single
elements may be computed.

This is valid for discrete systems only. The procedure can be extended to continuum
problems: Finite Element Method.
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