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Stato di tensione

nel riferimento principale 01 0 0
g =o0;j=|Txy Oy Tyz| 6componentiindipendenti > Gprine =0 02 0
Txz Tyz Oy 0 0 o3
nel riferimento 0 0

€x  Exy Exz L principale ~ €1
§ = gj=|%vy & &€yz | 6componentiindipendenti, dove &; = -y;; coni # j > Eprinc = 0 & O
€xz €yz &z 0 0 &3

Le tre tensioni principali g4, 0,, 03 si ricavano ponendo il seguente determinante pari a zero e trovando le
incognite o :

TXZ




Stato di tensione

0-3_110-2"'120-_13:0

_ )
I, =tr(6) = oy + 0y + 0, Invarianti  del
1 1 tensore delle
I, = = [(tr6)? — tr(c%)] = = (0y0i; — 0y;0;;) = — (0,0, + 0,0, + 0,0,) + (14, + 13, + 12 tensigglp~ono
2 2[( ) (°)] 2( ii0jj — 0ij Jl) (0,0y +0y0; + 0,0%) ( Xy & vz Zx) indipendenti
dal sistema di
_ =\ _ 2
13 = det(o') = UnyUZ + ZTxyTyZTZJC - (O-xTxyz + O-yszz + Uszy ) riferimento

Si possono ricavare i coseni direttori ([, m, n) delle tre tensioni principali, sostituendo in 6,
una alla volta, le oy, 0,, 05 trovate in precedenza, e risolvendo il sistema:

Oy — 0 Tyz Tyz I
Tey Oy —0 Ty, [Im|=0
Tz Ty, 0,—06|Lln



Stato di tensione

Ipotizzando g; = 0, = 03, gli invarianti nel riferimento principale risultano:

11=O'1+O'2+0'3

03 —Lo*+Lo—13=0 { I, = = (010, + 0,03 + 0301)

I3 = 010,073

Se lo stato di tensione e piano (es. o3 = 0), oppure se il problema e assialsimmetrico, una delle tensioni
principali & nella direzione di simmetria ed e facile da individuare. In questi casi si trovano facilmente le altre
due tensioni tramite la costruzione grafica con i cerchi di Mohr

Il vantaggio di lavorare con gli invarianti & che si possono calcolare partendo da un & generico non principale
grazie alla non dipendenza dal sistema di riferimento



Stato di tensione ]

arte idrostatica + .

Generico stato di tensione

JX'_ —] O'x
Stato idrostatico, rif. principale:
0 0 S1 0 0
O-m 0 —+ 0 Sy 0 O'/ l
V4
0 Om 0 0 S3 0_y
Stato idrostatico (o stato sferico): o, = 0, = 0, € Tyy = Ty; =Ty, =0 ovvero 5 = sij=0

1 1 1
Om =§(ax+ay+az) =§(01+02 + g3) =511

|

e una tensione media

Tensore idrostaticop = p;; = 6;;0,, dove



Stato di tensione

Oy
I 2
Generico stato di tensione ¢ | /
O-X —] —_— o-x
om 0 0] [s; 0 0 /
0 o, O0]|+|0 s, 0 22 l
V4
y
Tensore deviatorico, nel sis a di riferimento generico:
[205x—0y =0y ]
- Txy Txz
Ox Om Txy Txz 3
= T g, — O T 20y=0x~0z
S = Sij = O-ij — Sijo-m = xy y m VZ = Txy Tyz
T T o, — O 3
XZ vz Z m Zo'z—o'x—o'y
. o . T T
Nel riferimento principale: s; = g; — 0, coni = 1,23 : Xz yz 3 :
0, — O 0 0 S 0O O
= 1 m ! _ 20y — 03 — 03 20, — 01 — 03 _203—0,—0p
S = O 0-2 - O-m O = 0 SZ O S1 = 3 Sy, = 3 S3 = 3
0 0 03 — Oy 0 0 s3



Stato di tensione

arte idrostatica + p

Generico stato di tensione .

Arte deviatorica

Analogamente al tensore delle tensioni, anche per il tensore deviatorico possono essere calcolati gli invarianti: /1, /5, /3
3 2 _
s?=J1s°t2s=J3=0

Espresse tramite le componenti s; Espresse tramite le componenti o;

Ji=tr(s) =s;+s,+s3=0 (sempre nullo) Ji=0

1 o
1 1 J2 = g[(01 —03)% + (0, — 03)* + (03 — 01)*] (principale)
Jo =5 U = 31) = —(515; + 553 + 5351) == (s + 55 +53)

3 2 J, = %[(ax — ay)z + (o, — az)z + (0, — ax)z] +6(t2, + 12, + 12,) (non principale)

1 \ o
J3=55 213 + 91,1, + 2713) = det(5) = 515,53 J3 = (01 — 0m) (02 — o) (03 — o) (principale)

8
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Stato di tensione

arte idrostatica + p

Generico stato di tensione .

Arte deviatorica

Componente idrostatica p Componente deviatorica S
* comporta solo variazione di volume e non di forma * comporta solo variazione di forma e non di volume
* non influenza né lo snervamento né il comportamento * ha un ruolo fondamentale sullo snervamento e sul
plastico nei metalli duttili danneggiamento/rottura dei materiali duttili

Tali affermazioni non dipendono dal materiale e valgono sia in campo elastico che in campo plastico



Stato di deformazione

Per piccoli spostamenti, il tensore delle deformazioni € e definito:
ow
ox

ow
Sy

/

gij =
ov
Sy_@

ou 1/6u ov 1/6u

ox z(a—fa) z(y
1/6u o6v ov 1/6v
i(a—fa) 5y 5<£+
1/6u ow 1/6v ow ow
z(va) z(?g) 8z

Deformazioni normali
(variazione di volume)
gx, gy, EZ

\

/

Deformazioni tangenziali
(variazione di forma)

Exyr €yzs Ezx

1 1(6u o6v
&y T5Vey T 5 @"‘&

10



Stato di deformazione

Analogamente alle tensioni, esistono tre deformazioni principali &, &,, €3 e si ricavano sempre tramite
azzeramento del seguente determinante:

— /
|€ij — 6ij€| = gxy Sy € Syz //" 83 — I{SZ G 128 — Ié =0
=0
Nel riferimento generico Nel riferimento principale
Ii =&, +¢,t+¢ I =& +& +&
[
I, = —(ex&y + 6, + £,6,) + €5y + &5, + €2, [; = —(&162 + €263 + €361)
r_ 2 2 2 I3 = g,6,¢
I3 = €488, + 26508785, — (ExEyz + EyExz + €2E%y) 3 1€2¢€3

Per materiali omogenei e isotropi le direzioni principali delle tensioni e delle deformazioni sono coincidenti

11
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Coordinate di Haigh—Westergaard

01
A
. _ : : : _
Piano deviatorico // al piano 1 e L alla P}Jnto P(a.l, 02,.03). generlco stato ten5|onz?\Ie ngllo spazio delle tensioni
trisettrice * Piano deviatorico: piano ortogonale alla trisettrice e passante per P
vettore che giace Y
4 emesa [oN| = ¢
w  Trisettrice sul piano deviatorico
e OP =|ON [+ NP
p n_- —
o3 proiezione sulla trisettrice |NP| =p
N
3
Piano.ad Piano deviatorico | g/ ) g3 sono le proiezioni
A 03 014 degli assi g1,0,, 03 sul piano
P > 03 0 deviatorico
Ve O PO
/// /\
7 .
i p 0 = Angolo di Lode
e A
i Angolo che si forma tra g;

e NP (ovvero p)

13




Coordinate di Haigh—Westergaard

Piano

Piano deviatorico // al pianom e 1 alla

trisettrice
O_I
1 Trisettrice
P (7] s
7
Ve
7
p n_-
o3
N
3
03
n

Le grandezze p e 6 sono le coordinate polari del punto P sul
piano deviatorico

Generico stato tensionale P descritto da una nuova terna di
coordinate: P = (&, p,0), sono chiamate coordinate di Haigh-
Westergaard, da cui il nome “spazio di Haigh-Westergaard”

Piano deviatorico | |5 criticita dello stato tensionale
o1 4 allo snervamento e alla rottura
p, © (danneggiamento) dipende da
v queste tre grandezze.

P A

Z‘/

N

0y 03

14




Coordinate di Haigh—Westergaard

01
A
't)i?n(t)tquiatorico // 2l il € L alla * Punti appartenenti alla trisettrice: stati tensionali idrostatici:
risettrice
(0p = 0,=03; $1 =5, =53 =0)
ol Thsettri * La componente idrostatica dello stato di tensione é pari alla
risettrice . . . . ..
P o0 e distanza del piano deviatorico dall’origine
n . . .
. g o} * Piano deviatorico: o4 + 05 + 03 = V3 ¢
£ N , . . e
* Piano 7 (// al piano deviatorico, passante per l'origine):
Piano
A O-é 0-1 + 0-2 + 0-3 == 0
n
70 >03  « Ladirezione della trisettrice & definita dal suo versore fi:
7
X < 1 1 1 )
e n = ) )
’ V3 V3'V3

15




Coordinate di Haigh—Westergaard

Relazione tra (¢, p, 0), (01, 0,,03) e (I1,],,]3) - Coordinata &

0"‘1 . 01 1 1
OP = |02 ﬁ:—l

Piano deviatorico // al piano m e 1
alla trisettrice

Iy

. Trisettrice 1 01 1 1 1
:ﬁT-m))z—[l 1 1] 07| = — \/§O‘ = —
E m \/§

01 +—=0, +—=03 =
V3 o] VBB TB

—_ |
03

La coordinata ¢ di Haigh-Westergaard & proporzionale alla parte sferica a,,, (o
= >3 parte idrostatica) del tensore delle tensioni, ovvero al primo invariante del

4 tensore delle tensioni I;

] I 11 11 11 [%m
V3V3|y]l 3|4 1l lom

oy

Piano

-

16




Coordinate di Haigh—Westergaard

Relazione tra (¢, p, 0), (04, 05,03) e (11, ]5,]3) - Coordinata p

a An . AN LW N . .
y Conoscendo OP e ON, siricava NP e si calcola il suo modulo p

Piano deviatorico // al piano m e 1
02| —|Om]| =1[S2
03 Om S3

alla trisettrice
p =|NP| = Jsf + 55+ s =/2),

NP = OP — ON =

Trisettrice
7~

i
03

Piano

dove: J, = %(512 + 52 + s%)

7 La coordianata p di Haigh-Westergaard, € proporzionale alla parte deviatorica
del tensore delle tensioni, ovvero al secondo invariante del tensore
deviatorico J,.

oy

17



Piano

02

41

Piano deviatorico // al piano m e L
alla trisettrice

al
P g\ .
~
e
q " <
P \ n -
\ o

N

o

Coordinate di Haigh—Westergaard

Relazione tra (¢, p, 0), (04, 05,03) e (11, ]5,]3) - Coordinata 6

Trisettrice
-

03

Piano deviatorico

0-1’ A

2
A, _ 1 _ \ . ) 1
l' = _\/E[ }] e il versore dell’asse gy

La proiezione del vettore NP sull’asse g, risulta:

i'T. NP 1[z 1 -1] il 251752 7S 0
. = — -1 - 2| = = pcos
V6 5 V6
Essendos; +s, +s3 =0 — s; = —s, —s3 allora:
S g, = 6
> S1 = pCcos
Ricordando che p = /2, , risulta:
o= Y35
cosf = ——
2 )2

18




Coordinate di Haigh—Westergaard

Relazione tra (¢, p, 0), (04, 05,03) e (11, ]5,]3) - Coordinata 6

41

Piano deviatorico // al piano 7 e | Utilizzando la relazione trigonometrica: cos 30 =4 cos3 6 — 3 cos 6
alla trisettrice
| 3vV3
P o  Tisettrice cos 360 = —3/51 (51 —]2)
2], 72

P fi_ -
\ ~ a3
4 1 1 1
dove: s? — J, = s? —5(512 + 52 +5%) = E(sf —sf—-s3) = (=52 = 55)? — 52 — 52] = 5,85

Piano

o,
03

/’/ Piano deviatorico — 3\/§ — 3\/§ ]3 = Parametro
cos 30 = 37515253 = 3 =X 3 )
ol 4 2/, /2 2, /2 deviatorico

a5 P. ]

" S Il dominio di 8 e di conseguenza di X risulta:

T
4 1 0<sf<s3 - -1sx<l1
N
a; [

19




Coordinate di Haigh—Westergaard

Relazione tra (¢, p, 0), (04, 05,03) e (11, ]5,]3) - Coordinata 6

41

Piano deviatorico // al piano w e L
alla trisettrice

'
g 2 ;

1 Trisettrice

//
e

P
q " Cad
P \ n -

\ o

N

Piano

o,
03

7 Piano deviatorico

h

(ep) P

Ricordando il criterio di snervamento di Von Mises

1
quM = _\/[(01 — 02)% + (0, — 03)* + (03 — 01)?]
V2
e riprendendo la relazione di J, nel riferimento principale
1

—[(01 — 02)* + (02 — 03)* + (03 — 01)°]

]2=6

si ottiene:

(Ge )
ang =3, ; =
Quindi il parametro deviatorico X si puo riscrivere come:
27 ]3

Z(Ue)

Si noti che X e adimensionale, ovvero € normalizzato rispetto a aquM

20




Coordinate di Haigh—Westergaard

Relazione tra (¢, p, 0), (04,05,03) e (I1,]5,]3) - Coordinata &

Per convenienza viene normalizzata anche la grandezza &, ovvero la tensione
4 idrostatica o,,:

Piano deviatorico // al piano m e 1
alla trisettrice

om I 1 I

— = = = 1 _ Im =T Triassialita
geq  30eq 335, /3

Trisettrice
7~

T e X sono adimensionali, essi descrivono la componente idrostatica g, e il
terzo invariante del tensore deviatorico /3, rispettivamente.

Piano

Entrambi sono normalizzati rispetto alla tensione equivalente
y % diVon Mises ggy"

oy

21



Coordinate di Haigh—Westergaard

Riassumendo:

» ¢ - componente idrostatica del tensore delle tensioni, dipende da I;
* p — componente deviatorica del tensore delle tensioni, dipende da s4, s,, S3, ovvero da J,
* 0 — dipende dalle componenti deviatoriche, ovvero dipende J,, /3

Il punto P si puo descrivere in tre differenti modi:
* P = (04,0,,03) coordinate principali
« P = (¢, p,0) coordinate di Haigh—Westergaard

* P = (I,],,]3) coordinate in termini degli invarianti

Nei materiali duttili lo snervamento dipende solo da J, (von Mises) o da da J,, J3(Tresca) ovvero & funzione solo
di p o p, 8. Quindi, sia per il criterio di Von Mises che per quello di Tresca lo snervamento non dipende dalla
componente idrostatica, ma solo da quella deviatorica. Al contrario, il danneggiamento € funzione degli
invarianti I, /,, /5.

22



COMPORTAMENTO
ELASTICO ISOTROPO




Comportamento elastico isotropo

Legge di Hooke: o =F ¢

£ e /e T/ 0 0 0lr o,

&y e Ye /e O 0 Off oy

€ -V -V 1 0 0 0ll o

Legame costitutivo:  [e] = gxzy = O/E O/E /f) Ye 0 0 T"Zy
2l Jo 00 0 0 e 0 D
ol 0 0 0 0 0 Ilfl=

In forma compatta risulta:

[e] = [D]*[o]

Esclusivamente in campo elastico e per materiali con comportamento isotropo la relazione € biunivoca e si puo
riscrivere:

Il termine E & il modulo di Young o di elasticita, il termine v & il coefficiente di Poisson, mentre il termine G ¢ il
modulo elastico tangenziale (o modulo di taglio) che € pari a:

E

G=—oonu
2(1+v) 24



Comportamento elastico isotropo

Legge di Hooke: o =F ¢

Legame costitutivo:  [g] =

Non

deformazioni  tangenziali e —
tensioni normali

c’e accoppiamento tra

/E
/g
/e

V/E
g
V/E

deformazioni normali
tensioni tangenziali

Non c’e accoppiamento tra

e

componenti tangenziali

Non c’é effetto Poisson per le

Nel riferimento principale basta annullare i termini ;; e 7;; con i # j, quindi la relazione risulta:

Ye Vg /g
Ve Yg Vg
e Ve g

01
)
03

Per materiali isotropi le direzioni principali di tensioni e deformazioni coincidono.

25



Comportamento elastico isotropo

Le singole componenti valgono: Nel riferimento principale:
( 1r - ( 14 )
&x =7 |0x = v(ay + az)_ + aAT &1 =501~ v(o, + o3)| + AT
1, i 1, :
&y =% 1oy~ v(o, + o,)| + aAT | & = &y v(o, + o3)| + @ AT
1. ; 1, :
& =410z~ v(o, + ay)_ + aAT L83 =103 — v(o, +a,)| + aAT
* 1
v T o6
1
€yz = 5 tyz
1
ngx = Esz

Definire una relazione piu compatta per scrivere la legge di Hooke generalizzata per tutte e sei le componenti

26



Comportamento elastico isotropo

1 o o o o o
£x=E[ax—v(ay+az)] =Ex—vfy—vfz+aAT+vfx—vfx
1+v %
& =% Gx—E(Jx+ay+aZ)+aAT
1 v
€x=EO'x—EIl+CZAT

8;j = 0 per componenti tangenziali

1 v
» (a = & = ﬁo-ij - 6,_] (Ell - aAT)

8;j # 0 per componenti normali

Per le tensioni si riscrive come:

» (5)—)0'11 =2G(€ij_8ij CZAT)+6U/1(I{—3CZAT) 11=O'x+0'y+0'z ; Ii=€x+£‘y+£‘z

Il termine A € una delle due costanti di Lamé (l'altra € G) e vale:

v E

A= A rvna—m

27




Comportamento elastico isotropo

In campo elastico per materiale isotropo, la legge di Hooke per tensioni deviatoriche (5) e deformazioni
deviatoriche (e) e pari a:

1
€ =505
A seguire i passaggi per ricavare la relazione:
, 1 v 1 v 1 v
11 = ﬁO'x = 6” (Ell - OZAT) + ﬁﬂy — 61] (Ell - aAT) + EO'Z — 61] (Ell — OIAT)
p =122 § sear
1= 7 A4 a
Al AT  deformazione idrostati
Em = E om + eformazione idrostatica Ji=],=0
1 v 1-2v componente ':1 2 1 02 4 e2) = J2
el-j = gij —&m = io-ij — 6” (E 30'm — aAT + E Om + OZAT> deviatorica ]2 2 (61 €2 83) (26)2
I3

1+v 1+v 1 J5 = ejeye3 = ——

€ij = T(Uij Um) = Tsij = ﬁsij (26)°

28



CRITERI E SUPERFICI
DI SNERVAMENTO




Criteri di snervamento

| criteri di snervamento legano la pericolosita dello stato tensionale multiassiale con la pericolosita di uno stato
equivalente uniassiale (monoassiale).

Sollecitazione » Sollecitazione » Sollecitazione limite
multiassiale @ monoassiale g, del materiale o,

Generalmente lo stato monoassiale limite comunemente impiegato per il confronto e ricavato dalla prova di
trazione, in quanto e il test meccanico piu semplice da eseguire.

Di seguito si riportano il criterio di snervamento di Tresca e quello di Von Mises, normalmente impiegati per i
materiali duttili.

30



Crite ri d | snervamento: Tresca (criterio del massimo sforzo tangenziale)

Il materiale duttile arriva a snervamento quando lo sforzo tangenziale massimo (taglio massimo) arriva ad un

valore limite: 7,0 = Tiim

Ricordando i cerchi di Mohr:
01 — 03 = 2Tmax = ZTlim

Il materiale in sollecitazione multiassiale arriva a snervamento quando la tensione equivalente raggiunge la
tensione di snervamento a trazione. Nel caso le tre tensioni principali siano cosi ordinate g; = g, = 03, risulta:

T

- — Traz _ A
Oeq = 01 — 03 = Opj;py = Op y
T2 = Tmax
IR
- TrREScA _ 90 N
Tiim - 2 I3 >
0-3 0-2 0-1

31




Crite ri d | snervamento: Tresca (criterio del massimo sforzo tangenziale)

Caso 2D (tensione piana g3 = 0) Caso 3D
03
+0, ‘s Piano
0 , trisettrice

v

01
+0,

v

03

Per i materiali duttili si pu0 assumere con buona
approssimazione che i limiti di snervamento a
compressione e trazione siano (in modulo) uguali

P; & interno alla superficie di snervamento di Tresca, la sollecitazione € in
campo elastico; oy — 03 < 0y

P, si trova sulla superficie: il materiale si trova in condizioni di incipiente
plasticizzazione; g, — 03 = 0

P; si trova "esterno" alla superficie di Tresca: sollecitazione in campo
plastico; o4 — a3 > gy

32




Criteri d| snervamento: Von Mises (massima energia di distorsione)

Per materiali duttili, la condizione di snervamento si raggiunge quando l|’energia di distorsione elastica
accumulata dal materiale nella sollecitazione multiassiale raggiunge un valore limite.
Tale limite per semplicita risulta pari alla massima energia di distorsione elastica accumulata nel caso di
sollecitazione monoassiale.
1
_ Multiax _ y;Traz (monoax)
UDistorsione - i]z - U - UD

Nel riferimento principale (caso 3D):
1
UJ’/CIM = _\/(01 — 03)? + (0, — 03)? + (03 — 01)% = Oy = 0y

V2

Nel riferimenti princiaple (caso 2D):

VM _
Oeq \/_\/01 + 02 + 0,0, = O1;m = Oy

In condizione di taglio puro, la tensione equivalente risulta essere: Si ricorda che:

VM _— VM

0o ,
3 VM
Ocq 3Ty, OVVEro Tllm—\/g Oeq =+ 3J2 = |35ijSij

33




Criteri d| snervamento: Von Mises (massima energia di distorsione)

Caso 2D (tensione piana o3 = 0) Caso 3D
0, 01
A A
e Piano
/7
4 . trisettrice
+O-0 // e
> 0’1 _
+0'0 ,/' > 03
' 3 \‘
s \
/ —0p 2 \
’ . 1
7 PR !
/7
/7 0-2

34




Criteri di snervamento: confronto Von Mises - Tresca

Caso 2D (tensione piana g3 = 0)

Tresca
Von Mises

Caso 3D

Piano

- trisettrice

%)

Il luogo dei punti del criterio di Tresca e sempre inscritto nel luogo dei punti del criterio di Von Mises, questo
significa che il criterio di Tresca risulta piu conservativo rispetto a Von Mises.

35




Criteri di shervamento: superficie di snervamento

Relazione analitica che identifica una generica superficie di snervamento:

funzione dello stato tensionale ®\ prestazione del materiale

Esempio: per il criterio di Von Mises la funzione é:

1
f(gij) = \/_z\/(gl — 03)% + (03 — 03)? + (03 — 07)?

K = oy = 0y

La generica funzione f(al-j) Si puo riscrivere come:
f’(al-j) =0 incui f'=f—-K
E noto che per lo snervamento conta solo la componente deviatorica, per cui la funzione risulta:
14 _
f'(sij) =0
Un’altra opzione € quello di descrivere lo stato deviatorico, oltre che tramite le componenti s;;, dagli invarianti
deviatorici, ovvero:

f""Uz2,J3) =0

36
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Criteri di shervamento: superficie di snervamento

Criterio di Von Mises:

frmUz2) = 0, poiché GquM =3 - fimUz) —K=0 - V3J2—a, =0

Criterio di Tresca:
7rU2,J3) = 0, poiché Von Mises dipende solo da J,, mentre Tresca da entrambi gli invarianti

Il criterio di Tresca riscritto tramite gli invarianti risulta:
ol = 4]3 +27]2 — (304, J2) + (9600, J2) — 6405, = 0

Se e verificata la seguente condizione, allora il materiale si trova in campo elastico e non ha raggiunto lo
snervamento:

f,(aij) <0
Che si puo riscrivere anche nella seguente forma:
f”(Sl' S2, 53) <0

37



Criteri di snervamento: superficie di snervamento

Stati tensionali P(o;;) e P'(0;;)

Superficie di snervamento di Von Mises 7 trisettri
" ITISEHmice Pp = Pp' (stessa componente deviatorica)
0-1 N
“ 0
pp\/ Stessa condizione di incipiente snervamento
A p
Pp' XX SP
» Stessa componente deviatorica = stessa criticita
S
P - V4 > 03 Se giacciono sulla stessa generatrice allora si trovano entrambi
’ in condizione di incipiente snervamento.
Ne consegue la forma delle superfici di snervamento: siccome i punti che
::{ Piano 7 - hanno la stessa componente deviatorica giacciono su rette parallele alla
7 g} trisettrice, allora le superfici di snervamento devono avere come

; generatrici delle rette parallele alla trisettrice.

La sola differenza tra i due stati tensionali P e P’ € la componente idrostatica che risulta essere ép >
¢ pr tuttavia essa non influisce sulla criticita rispetto allo snervamento.
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Criteri di shervamento: superficie di snervamento

Superficie di snervamento di Von Mises // trisettrice
o N Ai fini dello snervamento, & sufficiente osservare
1 \ cosa succede su un singolo piano deviatorico.
Pp \.-
s p
Ppr NX $p
Per convenienza si considera il piano di riferimento piu
fp, ¢ semplice: quello passante per [lorigine del sistema di
) ;/ & . o, riferimento, il piano .
Piano r: & = 0, e possibile valutare la criticita dello stato tensionale ai
::{’ Piano m fini dello snervamento senza perdere nessuna informazione e
02 confrontarlo con altri stati tensionali semplicemente osservando la

! componente deviatorica p.
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Criteri di shervamento: superficie di snervamento

3D
01

A

Von Mises

L. trisettrice

:0-3

%)

Piano it

p = /2], — ricordando che: 6" = /3], = gy

2D
o1 4 Piano 7
P=P
0
[ o
2 2
—_— — 99 —_— 4 O¢
=3 P=1%3 T

LUangolo di Lode 6
non conta nel
criterio di  Von
Mises:

¥ 0 si ha lo stesso p

2
3%

» Tutti gli stati tensionalicon p = \/; 0o Sitrovano in condizione di incipiente snervamento.
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Criteri di shervamento: superficie di snervamento

2D Tresca: esagono regolare ; Von Mises: cerchio

trisettrice

Piano

Massima
differenza

Piano

® Trazione pura

® Compressione pura

® Taglio puro

0=0-X=1
="/ >X=0 41




Criteri di shervamento: superficie di snervamento

2D Tresca: esagono regolare ; Von Mises: cerchio
Esistono degli stati limite del criterio di Von Mises

coincidenti con alcuni stati limite del criterio di Tresca. o1 4 Piano
Stati monoassiali: trazione (A), compressione (B) Massima A

differenza

£

TR _ VM _—
pmax_p -

2
3%

Secondo il criterio di Tresca c’e dipendenza dall’angolo di
Lode O, ovvero e funzione di J, e /3

Condizione di massima differenza tra VM e TR: pfR  — pI%

4

Stato di taglio puro (C) e Trazione pura f=0-X=1

® Compressione pura 0="/1->X=-1
® Taglio puro ="/ >X=0 42




Criteri di shervamento: superficie di snervamento

2D  Tresca: esagono regolare ; Von Mises: cerchio

Condizione di massima differenza tra VM e TR: pIR . — pI®

‘ o, 4 Piano

Stato di taglio puro (C)

Massima A
differenza

T 2 NER
ot = p M cosE = |5 0y =

6 |3 V2

Comportamento periodico ogni 60°: 0° < 08 < 60°

TR 72 o3
Pmin _ V3 _ g6
pVM - 2 —
® Trazione pura 6=0-X=1
® Compressione pura =T/3->X=-1

® Taglio puro ="/ >X=0 43




Criteri di snervamento: superficie di snervamento

, h . . . . . . . .
$ o E dimostrabile che tutti i criteri di snervamento che si possono
teorizzare devono essere compresi tra I'esagono (in blu) interno al

cerchio di Von Mises (in verde) e I'esagono esterno (in rosso) al
cerchio di Von Mises.

Ordinando le tensioni tali per cui (g, = 0, = g3), si puo definire il
parametro u (parametro di Lode):

—20'2 — 03 — 01

U=
03 01 — 03
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Comportamento materiale: snervamento & danneggiamento

Snervamento:
* Dipendenza da p e/o 0, ovveroda J, e/o J3 (VM solo ]/, ; Tresca /5, J3)

* Non dipendenza dalla componente idrostatica ¢ = \/§Jm

Dal punto di vista fisico, la componente deviatorica muove le dislocazioni ed e responsabile della
plasticizzazione.

Danneggiamento:
* Dipendenzada é, p e 8, ovverodaly, J, e J3, quindi dalla triassialita T e dal parametro deviatorico X
* Maggiore € la componente idrostatica (triassialita), piu critiche sono le condizioni di rottura

Dal punto di vista fisico, la triassialita & responsabile della nucleazione e crescita dei microvuoti, mentre il
parametro deviatorico governa lo scorrimento dei piani cristallini, il movimento delle dislocazioni e il
cedimento a taglio.

Il parametro deviatorico X puo essere espresso come angolo di Lode 8, o anche tramite il parametro di Lode u.
Sono tutte forme equivalenti per esprimere lo stesso concetto.
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Comportamento materiale: cosa succede superato ay?

Sollecitazione multiassiale generica:

P;: f’(al-j) < 0 interno alla superficie, campo elastico

P, : f’(al-j) = 0 giacente sulla superficie , incipiente

.y shervamento
superficie di

snervamento . . .
P : f’(al-j) ? esterno alla superficie di snervamento

"iniziale", deformazione plastica governata dalle leggi di
flusso plastico, danneggiamento irreversibile. Tanto piu
lontano e P3, tanto maggiore sara la deformazione plastica
e piu critico sara il danneggiamento.

Esiste un punto critico tale per cui il materiale arriva a cedimento plastico? A che distanza si
trova dalla superficie di snervamento?

Esiste, ma la distanza non ha un valore fisso: dipende dal tipo di sollecitazione imposto al
materiale. Esistono degli strumenti matematici, i modelli di danno, che forniscono
un’indicazione di quanta &, il materiale puo accumulare prima di arrivare a rottura.

trisettrice
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Comportamento materiale: cosa succede superato ay?

Sollecitazione monoassiale di trazione: P; - P, — Py

O-True

N e - N
= ,
Op =0y |------ \\\}5/ Carico/scarico elastico
/; %Q,;l E W  Carico/scarico elasto-plastico
NNWEE

Prima superficie di
snervamento

Ricarico elasto-plastico

lavoro elastico
recuperato

€r
trisettrice | | o’ rue

Snervamento materiale vergine: g,

: / Lo snervamento di un materiale € funzione della deformazione plastica o, = g, (&)
Snervamento materiale pre-deformato: gy, y y\Tp
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Comportamento materiale: ¢, equivalente

Considerando un materiale sottoposto a sollecitazione multiassiale, il criterio di Von Mises O'quM consente di
riportare lo stato di tensione multiassiale nel suo equivalente monoassiale ugualmente critico:

1
Opa! = \/—E\/(ax — ay)z + (ay — 02)2 + (0, — 0,)% + 6(7,%3, +15, + Tgx)

Riguarda solo le tensioni: G — ggy"
W -, esiste?

Ovvero, esiste una relazione che permette di associare la deformazione plastica del caso multiassiale, gestita da
Ep, ad una deformazione plastica equivalente a quella del caso uniassiale?

Come nel caso uniassiale la deformazione plastica fa variare la tensione di snervamento, quindi anche nel caso
multiassiale sara la deformazione plastica I'unica responsabile della variazione di snervamento.
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Comportamento materiale: ¢, equivalente

Obiettivo: trovare la relazione &€ = ¢,

Ipotesi di partenza: lavoro speso W per deformare plasticamente il materiale

Caso monoassiale: W = fogp daw in cui dW = o, - de,_ = dWH™

L'obiettivo & verificare la seguente uguaglianza: dW*™ = g, - de, = ogg" - dep' multt

incremento di deformazione
plastica equivalente

Tale incremento vale:

V2
3

2 2 5
de, oq = \/ (depr, — depi,) +(depy, — deyy ) +(dep, — dep,)*+6 [(dgplxy) + (dgplyz) + (dep, ) ]
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Comportamento materiale: ¢, equivalente

Bn SO A e At

componenti mcrementall del tensore della deformazione plastica

E necessario raglonare in termini incrementali in quanto la relazione
tra tensione-deformazione non e lineare in campo plastico

E' possibile ridurre al caso uniassiale déy, ¢4, € controllare I'uguaglianza con déy,;_ (a titolo di esempio si e scelta
la componente x)

>

W ox # 0
in termini di o: o _ . .
Caso uniassiale per un

materiale isotropo: dey # 0

in termini di €: dgpl =dep, = —Vpdep, # 0
dgplxy - dgpl yz dgpl zx =0
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Comportamento materiale: ¢, equivalente

Coefficiente di Poisson in campo elastico: v = 0.3

Coefficiente di Poisson in campo plastico: v, = 0.5

In campo plastico il materiale si deforma senza variazione di volume
— > (trasformazione isocora), cosa non vera in campo elastico dove il
materiale si espande.

> AV=0 owero &+eg+e,=0 - v,=05

Quindi riducendo dgy ., al caso uniassiale si ottiene:

VZ 2 2 2
depeq =2 \/ (dept, — dep,) > +(deyr, — dey, ) > +(dep, — dey )*+6 [(dsplxy) +(dey,,) + (dep,,) ] =

= dgpl,eq = \/_f\/(dgplx + 0.5 dgplx)z +0+ (dé'plx + 0.5 dgplx)z +6:-0=

Quindi e valida I'affermazione:

NG 2 2 2 2 R
A ?2\/2 (depe,) "‘%(deplx) = ?Zwlz(deplx) = dép, g dWUni — gy multi
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Comportamento materiale: cosa succede superato o,,?

Sollecitazione multiassiale generica (che include anche il caso monoassiale): P, - P, — P;

Superficie
materiale "non
deformato"
y 3 7
a9 .
// ,///
Pig - Py
e , >
v s 03
Ve L7
}(:’
/” \‘ 0-2
~ \ s
. : %
, 7/
’ Ve
7/
trisettrice i

superficie
Snervamento
"aggiornata"

In P; il materiale € in campo elastico. Da P, a Ps, il
materiale incrudisce e la superficie di snervamento evolve
in funzione dello stato tensionale.

Nella figura e riportata l'evoluzione della superficie di
snervamento, che consiste in un’espansione.

Possibili trasformazioni della superficie di snervamento:

* Espansione
* Traslazione
* Combinazione di espansione-traslazione

Superficie di snervamento “iniziale”:

\/3_]2—00=0

"Nuova" superficie di snervamento:

_——mms

// (\
V3l —\Jy (‘Spl)" y 0

Sem——

Snervamento attualizzato, aggiornato
post deformazione plastica
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Comportamento materiale: modelli di incrudimento

Esistono diversi modelli

incrudisce, e si diversificano in funzione delle condizioni di carico.

Incrudimento isotropico

(Espansione)

\

Materiale sottoposto
ad una sollecitazione
monotona crescente

per descrivere I'evoluzione della superficie di snervamento quando il materiale

01 01
A A
-~ /<\ RN
4 d [N N
/ / \ \
/ / \ \
/ / \ \
I “ g !
\ \ I 1
\ \ /
\ \ / /
\ /
S \\// //
\\~ - —f
O3 - - %)

) ) ) Incrudimento misto
Incrudimento cinematico ) ) i .
isotropico-cinematico

(Traslazione) , ,
(Espansione-traslazione)

Materiale sottoposto
ad un carico ciclico

(es. carico-scarico) T effetto Bauschinger
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Comportamento materiale: effetto Bauschinger

Nel caso di carici ciclici, l'incrudimento cinematico puro e misto funziona meglio perché tiene
conto dell’ Effetto Bauschinger — asimmetria della curva tensione-deformazione ciclica

Materiale indeformato:
/ * Snervamento a trazione +a,

* Snervamento a compressione —a;

Superamento del limite elastico a trazione:

* Nuovo snervamento a trazione Oy,

€ « Sjhaun nuovo snervamento a compressione # —0y ed
compressione assume un valore pari a —O'J', tale per cui |O'3',| < |O'y|

Asimmetria della curva
stress-strain
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Comportamento materiale

f(aij) — K =0 ovvero f’(al-j) = (0 generica funzione di snervamento che assume i valori:

. f’(al-j) < 0 campo elastico (punto interno alla superficie);

. f’(aij) = 0 incipiente snervamento (punto sulla superficie);

Superato lo snervamento iniziale, f’(aij) non sara mai maggiore di zero in quanto la superficie si

espande/trasla contemporaneamente alla posizione che assume il nuovo punto che ne descrive lo stato
tensionale. Quindi il punto non potra mai oltrepassare la superficie di snervamento, ma si muove con essa
nel mentre che quest’ultima evolve in funzione della deformazione plastica accumulata.

0 unto sulla superficie di snervamento, ma si sposta

(df’ = of ——do;j <0 scarico elastico —— P P . ! 5P

d0ij verso la parte interna tornando in campo elastico
0 mantenimento delle condizioni di incipiente

f'(g..) =0 {df' = s daU = 0 carico neutro L . ‘ Inclp

L d0ij plasticizzazione, il punto rimane sulla superficie

punto sulla superficie, ma si sposta verso la parte
\df' = daU > 0 caricoplastico —— esterna insieme alla  superficie che sta

aal]

espandendo/traslando, ulteriore plasticizzazione
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Comportamento materiale: non linearita stress-strain

In campo plastico € doveroso ragionare in termini di incremento di deformazione plastica (d¢) in quanto non
esiste piu la linearita tra tensione e deformazione tipica del campo elastico, definita dalle leggi di Hooke. La
relazione tra tensione e deformazione non & piu univoca.

Esempio: materiale sottoposto ad uno stato multiassiale di trazione e di torsione, (sollecitazione mista o — 1)

T

a

Stato tensionale
sul pianoo — 1

A—-B—-C—->M-—Z (ipotesi di incrudimento isotropico)

E
N> * A-B: carico monoassiale g, fino alle condizioni di snervamento
y * B—>(C: aumento della sollecitazione con plasticizzazione del
materiale (evoluzione della superficie)
Superficie di | e (C->M: scarico
shervamento 1
! * M-Z: sollecitazione elastica di taglio y,,
d >
¢ * —> 0 . . . . .
0=A M B C * Deformazione plastica risultante pari a &,; ottenuta nel passaggio

o B—C
Due storie di carico:

e A-B->C-M-Z
e A-D-E-N-Z -



Comportamento materiale: non linearita stress-strain

In campo plastico € doveroso ragionare in termini di incremento di deformazione plastica (d¢) in quanto non
esiste piu la linearita tra tensione e deformazione tipica del campo elastico, definita dalle leggi di Hooke. La
relazione tra tensione e deformazione non & piu univoca.

Esempio: materiale sottoposto ad uno stato multiassiale di trazione e di torsione, (sollecitazione mista o — 1)

f Stato tensionale
| pian — . . . . . .
SUBESY - — T A—-D—->E—-N-Z (ipotesi di incrudimento isotropico)
E
N4oooooo * A-D: sollecitazione elastica di taglio 7y, fino alle condizioni di
snervamento
D «
* D—E: aumento della sollecitazione plasticizzando il materiale
Superficie di | (evoluzione della superficie)
shnervamento 1 . .
Y i * E—N: scarico (stessa quota di Z)
|
d > . . N .
4 é ¢ > 0 ° -/
O=A M B c N—Z: sollecitazione o fino in Z

* Deformazione plastica risultante pari a €p,, Ottenuta nel
Due storie di carico:

e A-B->C-M-Z
e A-D-E-N-Z -

passaggio D-E



Comportamento materiale: non linearita stress-strain

In campo plastico € doveroso ragionare in termini di incremento di deformazione plastica (d¢) in quanto non
esiste piu la linearita tra tensione e deformazione tipica del campo elastico, definita dalle leggi di Hooke. La
relazione tra tensione e deformazione non & piu univoca.

Esempio: materiale sottoposto ad uno stato multiassiale di trazione e di torsione, (sollecitazione mista o — 1)

T stato tensionale * Diverse storie di carico che hanno stessi stati tensionali iniziale-finale
sul pianoo — 7 hanno deformazioni plastiche diverse. Quindi e falso affermare che
E . ad uno stato di sollecitazione e associato un solo stato di

Nt-------=< deformazione.

* Lo stato di deformazione e funzione della storia di carico applicata.
Questo € la ragione per cui € necessario ragionare in termini di
incrementi di deformazione in campo plastico.

Superficie di
snervamento

* Superato il limite elastico, le deformazioni accumulate in funzione
dello stato tensionale calcolano tramite le leggi di flusso plastico, le
quali consentono di associare alle tensioni le deformazioni
incrementali che si accumulano in campo plastico.

Z"-____
o
(@)

O=A

Due storie di carico:
e A-B->(C-M-Z
e A-D-E-N-Z -



Comportamento materiale: carico proporzionale

Unica condizione in cui decade la dipendenza dalla storia di carico: ipotesi di carico proporzionale (proportional

loading, P.L.)

v
&

%)

P; = (07,03, 0%) stato tensionale iniziale (eventualmente
nullo)

P¢ = (01, 0,, 03) stato tensionale finale

Da P; a Pr due strade: una generica e una lineare

Per il percorso lineare si possono definire le seguenti relazioni
tra lo stato iniziale e finale:

o, = Ka?
o, = Koy
o3 = Koj
* Percorso lineare = percorso di carico proporzionale

C’e proporzionalita tra le tensioni iniziali e quelle finali
* K funzione monotona crescente
* |l percorso curvilineo non & un percorso proporzionale

o (0] o
01 01 O O 03 O3 VM o,VM
— =5 5 — =5 — = T O =Kog
o, Oy 03 O3 o, O
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Danneggiamento duttile

Per leghe metalliche duttili il danneggiamento dipende dallo stato tensionale e dalla deformazione plastica
accumulata.

| modelli di danneggiamento duttile, sono modelli matematici che consentono di:

stimare quanta deformazione plastica puo accumulare il materiale sottoposto ad uno specifico stato tensionale
prima di arrivare a cedimento plastico. Ovvero permettono di predire le condizioni di incipiente collasso plastico. Cio
equivale a stimare la duttilita del materiale.

Il danneggiamento (D) ha le seguenti caratteristiche:

* incrementa proporzionalmente con la deformazione plastica equivalente accumulata ezq (da ora in avanti
identificata con ep);

* dipende dalle leggi di flusso plastico;

* dipende dalla storia di carico, ovvero dal tensore delle tensioni c;

* eirreversibile
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Danneggiamento duttile: sollecitazione monoassiale

Cedimento plastico

D = Deritico = 1
0<DK<1

Convenzione assunta:

* Condizione materialesano D = 0

Inizio del danno * Condizione di incipiente rottura D = 1 quando &, = &¢

D=0 i

N.b: considerazioni valide per sollecitazione

v gtrue
gp = & mantenuta monoassiale fino all’istante di
L ' L I J rottura
Campo Campo
elastico plastico 62



Modelli di danno duttile: classificazione

Modelli accoppiati (coupled): le grandezze che governano l'accumulo del danno

. . influenzano il comportamento plastico e viceversa
1° classificazione: basata

sull’accoppiamento del

. Modelli disaccoppiati (uncoupled): le grandezze che governano I'accumulo del danno
comportamento plastico

sono indipendenti dal comportamento plastico. La grandezza D risulta uno scalare che
Si puo ricavare in fase di post-processing

Modelli micromeccanici: analizzano il danno D in funzione della microstruttura,
ovvero analizzando I'evoluzione dei microvuoti (nucleazione, crescita, coalescenza) e
la presenza dei siti di inclusione; (modelli GTN, etc.)

2° classificazione: basata Modelli Continum Damage Mechanics (CDM): si basano su principi termodinamici;
sul principio ispiratore (modelli Lemaitre, Bonora, etc.)

Modelli empirici: definiscono una legge empirica basata su dati sperimentali, la quale
descrive 'accumulo del danno D in funzione della deformazione plastica accumulata;
(modelli Wierzbicki, Mohr, Coppola, etc.)
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Modelli di danno duttile: empirici

€p
Espressione generale dei modelli empirici: | p = f r(c,é de, D € [0,1]
0

Il danno D & una grandezza scalare che aumenta proporzionalmente con la deformazione plastica accumulata
€p pesata rispetto ad una funzione dello stato tensionale in quanto stati tensionali diversi portano a diversi
livelli di danno a parita di incremento di deformazione plastica. Quando il danneggiamento raggiunge un valore
critico (normalizzato a D=1) il materiale cede. Questo avviene per un livello di deformazione plastica
equivalente paria g, = &

Lo stato tensionale si puo descrivere tramite la triassialita T e il parametro deviatorico X (legato all'angolo di
Lode), ovvero tramite la parte idrostatica e deviatorica del tensore delle tensioni

T —
= VM
D= fI“(T X) de,, B ]
0 — Xe[-11]
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Modelli di danno duttile

Triassialita T e deformazione plastica accumulabile dal materiale:

&E
f €p-0.33 = £p0.33 = €p0.8 ) . ,
4 Sperimentalmente e noto che I'andamento della ¢,

Estrusione p e descrescente rispetto alla triassialita T.
"""""" p—0.33

Laminazione . - 4
Nel graflco SI rlportano

come esempio alcuni
processi produttivi di

Piegatura
€p0.33-----ooo---3

: Trafilatura deformazione a freddo
€Pogd-------------- R ~ A : e
. ! e i valori tipici della
! triassialita T associati ad
' ' » T essi
-0.33 0 0.33 0.8
Compressione Taglio Trazione

&
<

Direzione in cui il materiale puo essere maggiormente deformato plasticamente
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Modelli di danno duttile

Modelli empirici classici: il danno e funzione solo della triassialita T. Questi modelli
sono ormai superati in quanto nuovi studi hanno dimostrato che l|’evoluzione del
danno dipende anche dalla componente deviatorica dello stato tensionale, ovvero
anche da X. l

Modelli empirici recenti: dipendenza sia da T che da X. In particolare si & osservato
sperimentalmente che al decrescere del modulo del parametro deviatorico |X| &
associata una minore quantita di deformazione plastica accumulabile, ovvero una
minore duttilita.

TT - | g (minore duttilita)
Riassumendo:

VIX| - | & (minore duttilita)

€p
D = f r(r) dé‘p
0
€p
D = rT,X) dep
0
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Modelli di danno duttile (P.L.) : superficie di frattura

Ipotesi di carico proporzionale (proportional loading, P.L.) — T e X costanti, ovvero I' costante # D =r(T, X)f dey
0

Considerando la condizione critica di inizio rottura (¢, = &, D = 1) si ottiene: D = r,x) - & = 1 ovvero:

-

e = I'"(T,X)

£f Tipico andamento della superficie di frattura
(fracture surface o fracture locus) nei modelli recenti




Modelli di danno duttile (P.L.) : superficie di frattura

er = IL(T, X) * Un punto generico di coordinate (T, X, &) individua uno specifico stato tensionale (T, X)
f — ’ a cui e associato il corrispondente valore di deformazione plastica accumulata (&)
e * | punti appartenenti alla superficie sono definiti per D = 1,
Superficie di frattura P PP P P

quindi hanno coordinate (T, X, &p = ef)

* La superficie di frattura associa ad uno specifico stato
tensionale (T,X) il corrispondente valore di deformazione
plastica a rottura &f

* La superficie fornisce una stima della duttilita

: A Ep
* Il danno parziale accumulato si puo D =-Lt

esprimere anche come: i

€
. .. — P _
* Puntisulla superficie: D = = 1
f
€
* Punti al di sotto della superficie 0<D= e_p <1
f
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Modelli di danno duttile (P.L.) : superficie di frattura

In caso di quasi-carico proporzionale (quasi-proportional
loading), in cui le grandezze T e X variano leggermente, si
assumono i valori medi T,,; e X4, come rappresentativi
dell’intera storia di carico, pesati sulla deformazione plastica
accumulata. In questo modo € possibile considerare un solo
valore di T e X al fine di rendere la funzione I' nuovamente
costante, portarla fuori dall'integrale e ricavare &.

1 (¢
Tavg = E—J T(S)dgp
: : : 1o
Quasi-proportional loading | e
f
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Modelli di danno duttile (PL.) : procedura di calibrazione

Test sperimentali: prove di
trazione, di torsione, deformazione
piana, biassiali trazione-taglio, 4-
compressione, etc. Misurazione curve
globali (forza-spostamento)

Esempio
di provini
convenzionali

Simulazioni numeriche dei test
sperimentali: metodo agli elementi

Rouﬁd

finiti (FEM Round Bar Plane Strain Torsion
( ) (RB) Notched Bar (PS) (TOfS)
(RNB)
Stima grandezze locali nel punto 4 Rottura
critico nelle condizione di inizio - X
rottura per ogni test: deformazione 3 / |
plastica a rottura g, triassialita T e = ! |
parametro deviatorico X ‘f’ 2 ! I
N
2 ] |
Ottenimento della superficie di 1 | I
frattura tramite un algoritmo di 0 I

minimizzazione, utilizzando i punti
critici (TX, &) dei singoli test 0O 02 04 06 08 1 1.2

Spostamento [mm] 70




Modelli di danno duttile (P.L.)

Test sperimentali: prove di trazione,
di torsione, deformazione piana,
biassiali trazione-taglio,
compressione, etc. Misurazione curve
globali (forza-spostamento)

Simulazioni numeriche dei test

sperimentali: metodo agli elementi <=
finiti (FEM)

Stima grandezze locali nel punto
critico nelle condizione di inizio
rottura : deformazione plastica a
rottura &g, triassialita T e parametro
deviatorico X

Ottenimento della superficie di
frattura tramite un algoritmo di
minimizzazione, utilizzando i punti
critici (T.X, &¢) dei singoli test

procedura di calibrazione

“s  RB = = TORS

. RNB

-

Per ogni test, nel punto critico del provino, si ricava
I’evoluzione di 041,07, 03, Epe in particolare Ef imponendo
lo spostamento a rottura sperimentale
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Modelli di danno duttile (PL.) : procedura di calibrazione

Test sperimentali: prove di trazione, 4 . . .

=St Sp Pra ) Per ogni test/simulazione ottiene la terna (T, X, ef)
di torsione, deformazione piana,
biassiali trazione-taglio,

compressione, etc. Misurazione curve Provino di trazione

globali (forza-spostamento) Ef cilindrico liscio (RB)
Provino di ‘ . ‘
compressione . . . . Provino di trazione
(COMPR) Provino d! trazpne n cilindro con intaglio
Simulazioni numeriche dei test deformazione piana (PS)

(RNB10)
sperimentali: metodo agli elementi

e . Provino cilindro
finiti (FEM) torsione (TORS)

Provino di trazione
. . cilindro con intaglio
Stima grandezze locali nel punto pili severo (RNB6)
critico nelle condizione di inizio o)

rottura : deformazione plastica a

rottura &, triassialita T e parametro
deviatorico X

Ottenimento della superficie di X
frattura tramite un algoritmo di
minimizzazione
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Modelli di danno duttile (PL.) : procedura di calibrazione

Test sperimentali: prove di trazione, La procedura di calibrazione va eseguita per ogni materiale di cui si
di torsione, deformazione piana, vuole stimare la duttilita

biassiali trazione-taglio,
compressione, etc. Misurazione curve Provino di trazione
globali (forza-spostamento) Ef cilindrico liscio (RB)

Provino di . ‘ .

compressione d Provino di trazione
Provino di trazione in . . .

(COMPR) cilindro con intaglio

Simulazioni numeriche dei test deformazione piana (PS)

sperimentali: metodo agli elementi
finiti (FEM)

(RNB10)

Provino cilindro
torsione (TORS)

Provino di trazione
cilindro con intaglio
piu severo (RNB6)

Grandezze locali nel punto critico
nelle condizione di inizio rottura :
deformazione plastica a rottura &g, .033
triassialita T e parametro deviatorico X

Ottenimento della superficie di 15 4 e
frattura tramite un algoritmo di DU
minimizzazione
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Modelli di danno duttile (P.L): costanti di calibrazione

&

La superficie & identificata dalle costanti (cq, ¢o, ..., ¢; ) specifiche del modello adottato, oltre che essere funzione di T e
di frattura nello spazio (T, X, &¢). Si ricavano nell’ultima fase della procedura di calibrazione (algoritmo di minimizzazione).

X. Tali costanti assumono valori diversi in base al materiale scelto e governano sia la forma che la «quota» della superficie

Distanza tra punti e superficie pre-ottimizzazione

&  Superficie frattura= f(T, X, &, €1, €3, ..., C;)
i
iy TR
AANARREC, 13Ny
MY NRRUAAL WARAAY

“‘1‘
LR
T LT LA
Wy ““\\‘\"A‘l‘\‘ﬁ‘l‘\\\“wﬁ\\“l\“\“:.\\ﬂ‘,‘“u‘
“l\\“‘“\\\\\\\“nn\ aasaannuanantiny,
AEpy s VIRERRALRARARAAN A
ALY
\‘\\‘.““\

v aanstigy!
RLLNEREN, ADEY SO LY AsRE Ui
AL “’I\\\\\\“\n\‘t‘““‘“ st A sud
\‘“‘\\ﬁ‘\\\\““‘.“‘&““\‘“ Sasaunend
\‘\‘““-“ll\\\\\\‘l\\\

A susREn

033

1
1 -05
X

1 -05 l

' X

Tramite un algoritmo matematico di minimizzazione, immettendo dei valori di primo tentativo delle costanti, si
trova il valore delle costanti tali per cui la superficie di rottura risulta il piu vicino possibile ai punti sperimentali
(minimizzazione distanza), quest’ultimi individuati ciascuno dalla propria terna (T, X, ).
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Modelli di danno duttile: funzione I

Esistono diverse funzioni I' in base al modello di danno scelto. | primi modelli di danno sviluppati erano
funzione della sola T, mentre recentemente si e dimostrato che il danneggiamento duttile dipende sia dalla
triassialita T, sia dal parametro deviatorico X (angolo di Lode).

Modelli datati: & = r-¥(n > || luogo dei punti e il piano (T, ef)
Modelli piu recenti: & = I'Y(T,X) —— Il luogo dei punti & lo spazio (T, X, sf)

Di seguito si riportano alcuni modelli dipendenti dalla sola T e altri modelli funzione di T e X
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Modelli di danno duttile: modelli I'(T)

Maximum equivalent strain
Sf 1
D = j S—dep & = costante
0o <f
Il materiale arriva a cedimento (D = 1) quando la deformazione plastica accumulata raggiunge il valore critico
di rottura &.

Si calibra attraverso 'esecuzione di una sola prova meccanica, generalmente RB, da cui si ricava &¢.
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Modelli di danno duttile: modelli I'(T)

Rice and Tracey (RT)
&f
D= j ¢, 2D de,, In condizioni di carico proporzionale (PL) —— & (T) = c;e” 2"
0
i - . . y
4 | termini c; e ¢, sono le costanti del materiale che si ricavano
tramite la procedura di calibrazione. Per ricavarle € necessario
\ eseguire almeno due prove meccaniche: RB e RNB
B I numero affianco alla dicitura RNB indica il raggio
RNB 10

dell’intaglio. Piu severo e lintaglio e maggiore sara la
triassialita, cio significa una minore capacita di accumulare
deformazione plastica.

RNB 2

v
_|
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Modelli di danno duttile: modelli I'(T)

Johnson — Cook (JC) Ipotesi di P.L.
* &p velocita di deformazione (strain rate)

g T—T, s &, strain rate di riferimento
T) = —esT] (1 in(-2]||1 —_— 0 e
g (T) = ley + ce™%7] [ tain <g'0 T s Trote — To *  Tper: temperatura di fusione
J \ Y J * T, temperatura di riferimento
effetto effetto

velocita di deformazione temperatura

Il modello JC & costituito da tre blocchi: la prima parentesi contiene la formulazione di Rice and Tracey. La
seconda parentesi tiene conto dell’effetto di sollecitazioni dinamiche (che variano molto velocemente nel
tempo). La terza parentesi tiene conto dell’effetto della temperatura.

In condizioni statiche e a temperatura ambiente la formulazione siriduce a: & = [c; + coe™ 3T

Costanti di calibrazione: ¢4, ¢,, C3, C4, Cs

Prove meccaniche: RB e RNB condotte a diversa velocita di deformazione e diversa temperatura

Modello usato per gestire condizioni di crash test, impatto o processi di stampaggio veloce
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Modelli di danno duttile: modelli I'(T, X)

Wierzbicki-Bao

1 n
&r(T,X) = cie™ 2T — (cpe™" — c3e‘C4T)(1 _x7)

Per valori di X=1 la formulazione si riduce al modello di Rice and Tracey

Costanti di calibrazione: ¢4, ¢,, C3, C4

Il termine n & un parametro del materiale legato alla legge costitutiva del materiale: ¢ = K&"

Prove meccaniche: RB, RNB, TORS, PS, etc. E importante che vengano eseguite prove in cui si possa osservare
sia l'effetto della triassialita (RB, RNB), sia [leffetto del parametro deviatorico (TORS, PS).

Si possono eseguire anche prove multiassiali trazione-torsione, compressione-torsione, trazione-taglio,
compressione-taglio.
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Modelli di danno duttile: modelli I'(T, X)

Wierzbicki-Bai (Modified Mohr-Coulomb MMC()

. K| |1+4+¢f T 1 0 + T+1' T 1 0
&(T,X) = o 3 C0s| ¢ —garccos C1 3 Sin| = — g arccos

Sl

A volte il modello & espresso tramite il parametro di Lode 6 anziché esplicitare il parametro deviatorico X.
Si ricordano le espressioni di conversione tra le due grandezze:

1
X=cos30 ; 0= §arccos(X)
Costanti di calibrazione: ¢4, ¢,
Parametri legge costitutiva del materiale: K, n (0 = Ke™)

Prove meccaniche: RB, RNB, TORS, PS, prove multiassiali, etc.
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Modelli di danno duttile: modelli I'(T, X)

Coppola-Cortese (CC)
1

cos lﬁ% — %arccos(y)] "

cos lﬁ% — %arccos(yX)]

& (T, X) = le_CZT
AN 1

La prima parentesi gestisce I'effetto della triassialita, mentre la seconda parentesi tiene conto dell’effetto del
parametro deviatorico.

Costanti di calibrazione: ¢4, ¢5, B,V
Parametri legge costitutiva del materiale: n (0 = Ke™)

Prove meccaniche: RB, RNB, TORS, PS, prove multiassiali, etc.
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