
COSTRUZIONE DI MACCHINE

COMPORTAMENTO MATERIALI

a cura di Luca Cortese e Gabriele Cortis

Bozza 0.1, 2025



STATO DI 
TENSIONE E DEFORMAZIONE 

RICHIAMI TEORICI



Stato di tensione
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𝜎ധ = 𝜎௜௝ =

𝜎௫ 𝜏௫௬ 𝜏௫௭

𝜏௫௬ 𝜎௬ 𝜏௬௭

𝜏௫௭ 𝜏௬௭ 𝜎௭

𝜎ധ௣௥௜௡௖ =
𝜎ଵ 0 0
0 𝜎ଶ 0
0 0 𝜎ଷ

6 componenti indipendenti
nel riferimento principale

𝜀̿ = 𝜀௜௝ =

𝜀௫ 𝜀௫௬ 𝜀௫௭

𝜀௫௬ 𝜀௬ 𝜀௬௭

𝜀௫௭ 𝜀௬௭ 𝜀௭

𝜀௣̿௥௜௡௖ =
𝜀ଵ 0 0
0 𝜀ଶ 0
0 0 𝜀ଷ

6 componenti indipendenti, dove 𝜀௜௝ =
ଵ

ଶ
𝛾௜௝ con 𝑖 ≠ 𝑗

nel riferimento 
principale

𝜎௜௝ − 𝛿௜௝𝜎 =

𝜎௫ − 𝜎 𝜏௫௬ 𝜏௫௭

𝜏௫௬ 𝜎௬ − 𝜎 𝜏௬௭

𝜏௫௭ 𝜏௬௭ 𝜎௭ − 𝜎
= 0  𝜎ଷ − 𝐼ଵ𝜎ଶ + 𝐼ଶ𝜎 − 𝐼ଷ = 0

Le tre tensioni principali 𝜎ଵ, 𝜎ଶ, 𝜎ଷ si ricavano ponendo il seguente determinante pari a zero e trovando le 
incognite 𝜎 :

𝜎ଵ, 𝜎ଶ, 𝜎ଷ 



Stato di tensione
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𝐼ଵ = 𝑡𝑟 𝜎ധ = 𝜎௫ + 𝜎௬ + 𝜎௭

𝐼ଶ =
1

2
𝑡𝑟𝜎ധ ଶ − 𝑡𝑟 𝜎ധଶ =

1

2
𝜎௜௜𝜎௝௝ − 𝜎௜௝𝜎௝௜ = −(𝜎௫𝜎௬ + 𝜎௬𝜎௭ + 𝜎௭𝜎௫)  + 𝜏௫௬

ଶ + 𝜏௬௭
ଶ + 𝜏௭௫

ଶ

𝐼ଷ = 𝑑𝑒𝑡 𝜎ധ = 𝜎௫𝜎௬𝜎௭ + 2𝜏௫௬𝜏௬௭𝜏௭௫ − 𝜎௫𝜏௫௬
ଶ + 𝜎௬𝜏௭௫

ଶ + 𝜎௭𝜏௫௬
ଶ

Invarianti del
tensore delle
tensioni, sono
indipendenti
dal sistema di
riferimento

 𝜎ଷ − 𝐼ଵ𝜎ଶ + 𝐼ଶ𝜎 − 𝐼ଷ = 0

Si possono ricavare i coseni direttori (𝑙, 𝑚, 𝑛) delle tre tensioni principali, sostituendo in 𝛿, 
una alla volta, le  𝜎ଵ, 𝜎ଶ, 𝜎ଷ trovate in precedenza, e risolvendo il sistema:

𝜎௫ − 𝛿 𝜏௬௭ 𝜏௫௭

𝜏௫௬ 𝜎௬ − 𝛿 𝜏௬௭

𝜏௫௭ 𝜏௬௭ 𝜎௭ − 𝛿

𝑙
𝑚
𝑛

= 0
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Ipotizzando 𝜎ଵ ≥ 𝜎ଶ ≥ 𝜎ଷ, gli invarianti nel riferimento principale risultano:

𝐼ଵ = 𝜎ଵ + 𝜎ଶ + 𝜎ଷ

𝐼ଶ = −(𝜎ଵ𝜎ଶ + 𝜎ଶ𝜎ଷ + 𝜎ଷ𝜎ଵ)

𝐼ଷ = 𝜎ଵ𝜎ଶ𝜎ଷ

 𝜎ଷ − 𝐼ଵ𝜎ଶ + 𝐼ଶ𝜎 − 𝐼ଷ = 0

• Se lo stato di tensione è piano (es. 𝜎ଷ = 0), oppure se il problema è assialsimmetrico, una delle tensioni
principali è nella direzione di simmetria ed è facile da individuare. In questi casi si trovano facilmente le altre
due tensioni tramite la costruzione grafica con i cerchi di Mohr

• Il vantaggio di lavorare con gli invarianti è che si possono calcolare partendo da un 𝜎ധ generico non principale
grazie alla non dipendenza dal sistema di riferimento
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Generico stato di tensione  =  parte idrostatica + parte deviatorica

𝜎௜௝ = 𝛿௜௝𝜎௠ + 𝑠௜௝

𝜎ധ = 𝑝̿ + 𝑠̿ =

𝜎௠ 0 0
0 𝜎௠ 0
0 0 𝜎௠

+ 
𝑠ଵ 0 0
0 𝑠ଶ 0
0 0 𝑠ଷ

Tensore idrostatico 𝑝̿  = 𝑝௜௝ = 𝛿௜௝𝜎௠ dove       𝜎௠ =
ଵ

ଷ
𝜎௫ + 𝜎௬ + 𝜎௭ =

ଵ

ଷ
𝜎ଵ + 𝜎ଶ + 𝜎ଷ =

ଵ

ଷ
𝐼ଵ

Stato idrostatico (o stato sferico): 𝜎௫ = 𝜎௬ = 𝜎௭ e   𝜏௫௬ = 𝜏௫௭ = 𝜏௬௭ = 0 ovvero    𝑠̿ = 𝑠௜௝= 0

è una tensione media

Stato idrostatico, rif. principale: 
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𝜎ധ = 𝑝̿ + 𝑠̿ =

𝜎௠ 0 0
0 𝜎௠ 0
0 0 𝜎௠

+ 
𝑠ଵ 0 0
0 𝑠ଶ 0
0 0 𝑠ଷ

Nel riferimento principale: 𝑠௜ = 𝜎௜ − 𝜎௠ con 𝑖 = 1,2,3

Tensore deviatorico, nel sistema di riferimento generico:

𝑠 ന = 𝑠௜௝ = 𝜎௜௝ − 𝛿௜௝𝜎௠ =

𝜎௫ − 𝜎௠ 𝜏௫௬ 𝜏௫௭

𝜏௫௬ 𝜎௬ − 𝜎௠ 𝜏௬௭

𝜏௫௭ 𝜏௬௭ 𝜎௭ − 𝜎௠

=

ଶఙೣିఙ೤ିఙ೥

ଷ
𝜏௫௬ 𝜏௫௭

𝜏௫௬
ଶఙ೤ିఙೣିఙ೥

ଷ
𝜏௬௭

𝜏௫௭ 𝜏௬௭
ଶఙ೥ିఙೣିఙ೤

ଷ

𝑠̿ =

𝜎ଵ − 𝜎௠ 0 0
0 𝜎ଶ − 𝜎௠ 0
0 0 𝜎ଷ − 𝜎௠

=
𝑠ଵ 0 0
0 𝑠ଶ 0
0 0 𝑠ଷ

𝑠ଵ =
2𝜎ଵ − 𝜎ଶ − 𝜎ଷ

3 𝑠ଶ =
2𝜎ଶ − 𝜎ଵ − 𝜎ଷ

3
𝑠ଷ =

2𝜎ଷ − 𝜎ଶ − 𝜎ଵ

3

Generico stato di tensione  =  parte idrostatica + parte deviatorica

𝜎௜௝ = 𝛿௜௝𝜎௠ + 𝑠௜௝
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𝑠ଷ − 𝐽ଵ𝑠ଶ + 𝐽ଶ𝑠 − 𝐽ଷ = 0

𝐽ଵ = 𝑡𝑟 𝑠̿ = 𝑠ଵ + 𝑠ଶ + 𝑠ଷ ≡ 0 (sempre nullo)

𝐽ଶ =
1

3
𝐼ଵ

ଶ − 3𝐼ଶ = − 𝑠ଵ𝑠ଶ + 𝑠ଶ𝑠ଷ + 𝑠ଷ𝑠ଵ =
1

2
𝑠ଵ

ଶ + 𝑠ଶ
ଶ + 𝑠ଷ

ଶ

𝐽ଷ =
1

27
2𝐼ଵ

ଷ + 9𝐼ଵ𝐼ଶ + 27𝐼ଷ = 𝑑𝑒𝑡 𝑠̿ = 𝑠ଵ𝑠ଶ𝑠ଷ

𝐽ଵ ≡ 0

𝐽ଶ =
ଵ

଺
𝜎ଵ − 𝜎ଶ

ଶ + 𝜎ଶ − 𝜎ଷ
ଶ + 𝜎ଷ − 𝜎ଵ

ଶ (principale)

𝐽ଷ = 𝜎ଵ − 𝜎௠ 𝜎ଶ − 𝜎௠ 𝜎ଷ − 𝜎௠ (principale)

Analogamente al tensore delle tensioni, anche per il tensore deviatorico possono essere calcolati gli invarianti: 𝐽ଵ, 𝐽ଶ, 𝐽ଷ

Espresse tramite le componenti 𝑠௜ Espresse tramite le componenti 𝜎௜ 

𝐽ଶ =
ଵ

଺
𝜎௫ − 𝜎௬

ଶ
+ 𝜎௬ − 𝜎௭

ଶ
+ 𝜎௭ − 𝜎௫

ଶ + 6 𝜏௫௬
ଶ + 𝜏௬௭

ଶ + 𝜏௭௫
ଶ (non principale)

Generico stato di tensione  =  parte idrostatica + parte deviatorica

𝜎௜௝ = 𝛿௜௝𝜎௠ + 𝑠௜௝
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Tali affermazioni non dipendono dal materiale e valgono sia in campo elastico che in campo plastico

Componente idrostatica 𝑝̿ Componente deviatorica 𝑠̿

• comporta solo variazione di volume e non di forma
• non influenza né lo snervamento né il comportamento

plastico nei metalli duttili

• comporta solo variazione di forma e non di volume
• ha un ruolo fondamentale sullo snervamento e sul

danneggiamento/rottura dei materiali duttili

Generico stato di tensione  =  parte idrostatica + parte deviatorica

𝜎௜௝ = 𝛿௜௝𝜎௠ + 𝑠௜௝
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10

Per piccoli spostamenti, il tensore delle deformazioni 𝜀̿ è definito:

𝜀̿ = 𝜀௜௝ =

𝛿𝑢

𝛿𝑥

1

2

𝛿𝑢

𝛿𝑦
+

𝛿𝑣

𝛿𝑥

1

2

𝛿𝑢

𝛿𝑧
+

𝛿𝑤

𝛿𝑥

1

2

𝛿𝑢

𝛿𝑦
+

𝛿𝑣

𝛿𝑥

𝛿𝑣

𝛿𝑦

1

2

𝛿𝑣

𝛿𝑧
+

𝛿𝑤

𝛿𝑦

1

2

𝛿𝑢

𝛿𝑧
+

𝛿𝑤

𝛿𝑥

1

2

𝛿𝑣

𝛿𝑧
+

𝛿𝑤

𝛿𝑦

𝛿𝑤

𝛿𝑧

𝑑
P

Po

Po = (𝑥o, 𝑦o, 𝑧o)
P  = (𝑥, 𝑦, 𝑧)
𝑑 = 𝑢, 𝑣, 𝑤

𝜀௬ =
𝛿𝑣

𝛿𝑦

𝜀௫ =
𝛿𝑢

𝛿𝑥

y

x

Deformazioni normali
(variazione di volume)

𝜀௫, 𝜀௬, 𝜀௭

𝜀௫௬ =
1

2
𝛾௫௬ =

1

2

𝛿𝑢

𝛿𝑦
+

𝛿𝑣

𝛿𝑥

y

x

Deformazioni tangenziali
(variazione di forma)

𝜀௫௬, 𝜀௬௭, 𝜀௭௫
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𝜀௜௝ − 𝛿௜௝𝜀 =

𝜀௫ − 𝜀 𝜀௫௬ 𝜀௫௭

𝜀௫௬ 𝜀௬ − 𝜀 𝜀௬௭

𝜀௫௭ 𝜀௬௭ 𝜀௭ − 𝜀

= 0

Analogamente alle tensioni, esistono tre deformazioni principali 𝜀ଵ, 𝜀ଶ, 𝜀ଷ e si ricavano sempre tramite
azzeramento del seguente determinante:

𝜀ଷ − 𝐼ଵ
ᇱ𝜀ଶ + 𝐼ଶ

ᇱ 𝜀 − 𝐼ଷ
ᇱ = 0

Nel riferimento generico

𝐼ଵ
ᇱ = 𝜀௫ + 𝜀௬ + 𝜀௭

𝐼ଶ
ᇱ = −(𝜀௫𝜀௬ + 𝜀௬𝜀௭ + 𝜀௭𝜀௫) + 𝜀௫௬

ଶ + 𝜀௬௭
ଶ + 𝜀௫௭

ଶ

𝐼ଷ
ᇱ = 𝜀௫𝜀௬𝜀௭ + 2𝜀௫௬𝜀௬௭𝜀௫௭ − (𝜀௫𝜀௬௭

ଶ + 𝜀௬𝜀௫௭
ଶ + 𝜀௭𝜀௫௬

ଶ )

Nel riferimento principale

𝐼ଵ
ᇱ = 𝜀ଵ + 𝜀ଶ + 𝜀ଷ

𝐼ଶ
ᇱ = −(𝜀ଵ𝜀ଶ + 𝜀ଶ𝜀ଷ + 𝜀ଷ𝜀ଵ)

𝐼ଷ
ᇱ = 𝜀ଵ𝜀ଶ𝜀ଷ

Per materiali omogenei e isotropi le direzioni principali delle tensioni e delle deformazioni sono coincidenti



COORDINATE DI 
HAIGH–WESTERGAARD 
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𝜎ଷ

𝜎ଵ

𝜎ଶ

Piano 𝜋

O

ξ

𝜌

𝑛ො

Trisettrice

N

𝑛ො

Piano deviatorico // al piano 𝜋 e ꓕ alla
trisettrice

P
𝜎ଵ

ᇱ

𝜎ଷ
ᇱ

𝜎ଶ
ᇱ

𝜃

• Punto P(𝜎ଵ, 𝜎ଶ, 𝜎ଷ): generico stato tensionale nello spazio delle tensioni
• Piano deviatorico: piano ortogonale alla trisettrice e passante per P

𝑶𝑵 =  𝝃

𝑵𝑷 =  𝝆

𝑂𝑃 = 𝑂𝑁 + 𝑁𝑃

proiezione sulla trisettrice

vettore che giace
sul piano deviatorico

N

P 𝜽

Piano deviatorico

𝜎ଵ
ᇱ

𝜎ଷ
ᇱ𝜎ଶ

ᇱ

𝝆

𝑙መᇱ

𝜎ଵ
ᇱ, 𝜎ଶ

ᇱ, 𝜎ଷ
ᇱ sono le proiezioni

degli assi 𝜎ଵ, 𝜎ଶ, 𝜎ଷ sul piano
deviatorico

𝜽 = 𝑨𝒏𝒈𝒐𝒍𝒐 𝒅𝒊 𝑳𝒐𝒅𝒆
Angolo che si forma tra 𝜎ଵ

ᇱ

e 𝑁𝑃 (ovvero 𝜌)
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Le grandezze 𝝆 e 𝜽 sono le coordinate polari del punto P sul
piano deviatorico

Generico stato tensionale P descritto da una nuova terna di
coordinate: 𝑃 ≡ 𝝃, 𝝆, 𝜽 , sono chiamate coordinate di Haigh-
Westergaard, da cui il nome “spazio di Haigh-Westergaard”

𝜎ଷ

𝜎ଵ

𝜎ଶ

Piano 𝜋

O

ξ

𝜌

𝑛ො

Trisettrice

N

𝑛ො

Piano deviatorico // al piano 𝜋 e ꓕ alla
trisettrice

P
𝜎ଵ

ᇱ

𝜎ଷ
ᇱ

𝜎ଶ
ᇱ

𝜃

N

P 𝜽

Piano deviatorico

𝜎ଵ
ᇱ

𝜎ଷ
ᇱ𝜎ଶ

ᇱ

𝝆

𝑙መᇱ

La criticità dello stato tensionale
allo snervamento e alla rottura
(danneggiamento) dipende da
queste tre grandezze.



Coordinate di Haigh–Westergaard

15

• Punti appartenenti alla trisettrice: stati tensionali idrostatici:
(𝜎ଵ = 𝜎ଶ= 𝜎ଷ ; 𝑠ଵ = 𝑠ଶ = 𝑠ଷ = 0)

• La componente idrostatica dello stato di tensione è pari alla
distanza del piano deviatorico dall’origine

• Piano deviatorico: 𝜎ଵ + 𝜎ଶ + 𝜎ଷ = 3 𝜉

• Piano 𝜋 (// al piano deviatorico, passante per l’origine):

𝜎ଵ + 𝜎ଶ + 𝜎ଷ = 0

• La direzione della trisettrice è definita dal suo versore 𝑛ො:

𝑛ො =
1

3
,

1

3
,

1

3

𝜎ଷ

𝜎ଵ

𝜎ଶ

Piano 𝜋

O

ξ

𝜌

𝑛ො

Trisettrice

N

𝑛ො

Piano deviatorico // al piano 𝜋 e ꓕ alla
trisettrice

P
𝜎ଵ

ᇱ

𝜎ଷ
ᇱ

𝜎ଶ
ᇱ

𝜃
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Relazione tra ), ଵ ଶ ଷ e ଵ ଶ ଷ - Coordinata 

𝑂𝑃 =

𝜎ଵ

𝜎ଶ

𝜎ଷ

𝑛ො =
1

3

1
1
1

𝜉 = 𝑛ො் ȉ 𝑂𝑃 =
1

3
1 1 1

𝜎ଵ

𝜎ଶ

𝜎ଷ

=
1

3
𝜎ଵ +

1

3
𝜎ଶ +

1

3
𝜎ଷ = 3 𝜎௠ =

𝐼ଵ

3

La coordinata 𝜉 di Haigh-Westergaard è proporzionale alla parte sferica 𝜎௠ (o
parte idrostatica) del tensore delle tensioni, ovvero al primo invariante del
tensore delle tensioni 𝐼ଵ

𝑂𝑁 = 𝜉𝑛ො =
𝐼ଵ

3
 

1

3

1
1
1

=
𝐼ଵ

3

1
1
1

= 𝜎௠

1
1
1

=

𝜎௠

𝜎௠

𝜎௠
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Relazione tra ), ଵ ଶ ଷ e ଵ ଶ ଷ - Coordinata

Conoscendo 𝑂𝑃 e 𝑂𝑁, si ricava 𝑁𝑃 e si calcola il suo modulo 𝜌

𝑁𝑃 = 𝑂𝑃 − 𝑂𝑁 =

𝜎ଵ

𝜎ଶ

𝜎ଷ

−

𝜎௠

𝜎௠

𝜎௠

=

𝑠ଵ

𝑠ଶ

𝑠ଷ

𝜌 = 𝑁𝑃 = 𝑠ଵ
ଶ + 𝑠ଶ

ଶ + 𝑠ଷ
ଶ = 2𝐽ଶ

dove:  𝐽ଶ =
ଵ

ଶ
(𝑠ଵ

ଶ + 𝑠ଶ
ଶ + 𝑠ଷ

ଶ)

La coordianata 𝜌 di Haigh-Westergaard, è proporzionale alla parte deviatorica
del tensore delle tensioni, ovvero al secondo invariante del tensore
deviatorico Jଶ.
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Relazione tra ), ଵ ଶ ଷ e ଵ ଶ ଷ - Coordinata 

𝑙መᇱ =
ଵ

଺

2
−1
−1

è il versore dell’asse 𝜎ଵ
ᇱ

La proiezione del vettore 𝑁𝑃 sull’asse 𝜎ଵ
ᇱ risulta:

𝑙መᇱ ் ȉ  𝑁𝑃 =
1

6
2 −1 −1

𝑠ଵ

𝑠ଶ

𝑠ଷ

=
2𝑠ଵ − 𝑠ଶ − 𝑠ଷ

6
=  𝜌 cos 𝜃

Essendo 𝑠ଵ + 𝑠ଶ + 𝑠ଷ ≡ 0 → 𝑠ଵ = −𝑠ଶ − 𝑠ଷ allora:

3

2
 𝑠ଵ = 𝜌 cos 𝜃

Ricordando che 𝜌 = 2𝐽ଶ , risulta:

cos 𝜃 =
3

2

𝑠ଵ

𝐽ଶ
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Relazione tra ), ଵ ଶ ଷ e ଵ ଶ ଷ - Coordinata 

Utilizzando la relazione trigonometrica: 𝑐𝑜𝑠 3𝜃 = 4 𝑐𝑜𝑠ଷ 𝜃 − 3 𝑐𝑜𝑠 𝜃

cos 3𝜃 =
3 3

2 𝐽ଶ
ଷ

ଶൗ
𝑠ଵ(𝑠ଵ

ଶ − 𝐽ଶ)

dove: 𝑠ଵ
ଶ − 𝐽ଶ = 𝑠ଵ

ଶ −
ଵ

ଶ
𝑠ଵ

ଶ + 𝑠ଶ
ଶ + 𝑠ଷ

ଶ =
ଵ

ଶ
𝑠ଵ

ଶ − 𝑠ଶ
ଶ − 𝑠ଷ

ଶ =
ଵ

ଶ
−𝑠ଶ − 𝑠ଷ

ଶ − 𝑠ଶ
ଶ − 𝑠ଷ

ଶ = 𝑠ଶ𝑠ଷ

𝒄𝒐𝒔 𝟑𝜽 =
3 3

2 𝐽ଶ
ଷ

ଶൗ
𝑠ଵ𝑠ଶ𝑠ଷ =

3 3

2 

𝐽ଷ

𝐽ଶ
ଷ

ଶൗ
= 𝑿

Il dominio di 𝜃 e di conseguenza di 𝑋 risulta:

0 ≤  𝜃 ≤  
𝜋

3
   →   −1 ≤  𝑋 ≤ 1

Parametro 
deviatorico
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Relazione tra ), ଵ ଶ ଷ e ଵ ଶ ଷ - Coordinata 

Ricordando il criterio di snervamento di Von Mises

𝜎௘௤
௏ெ =

1

2
𝜎ଵ − 𝜎ଶ

ଶ + 𝜎ଶ − 𝜎ଷ
ଶ + 𝜎ଷ − 𝜎ଵ

ଶ

e riprendendo la relazione di 𝐽ଶ nel riferimento principale

𝐽ଶ =
1

6
𝜎ଵ − 𝜎ଶ

ଶ + 𝜎ଶ − 𝜎ଷ
ଶ + 𝜎ଷ − 𝜎ଵ

ଶ

si ottiene:

𝜎௘௤
௏ெ = 3𝐽ଶ   ;    𝐽ଶ =

𝜎௘௤
௏ெ ଶ

3

Quindi il parametro deviatorico 𝑋 si può riscrivere come:

𝑋 =
27

2 

𝐽ଷ

𝜎௘௤
௏ெ ଷ

Si noti che 𝑋 è adimensionale, ovvero è normalizzato rispetto a 𝜎௘௤
௏ெ



Coordinate di Haigh–Westergaard
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Relazione tra ), ଵ ଶ ଷ e ଵ ଶ ଷ - Coordinata 

Per convenienza viene normalizzata anche la grandezza 𝜉, ovvero la tensione 
idrostatica 𝜎௠:

𝝈𝒎

𝝈𝒆𝒒
𝑽𝑴

=
𝐼ଵ

3

1

𝜎௘௤
௏ெ =

𝐼ଵ

3 3𝐽ଶ

=
𝜎௠

3𝐽ଶ

= 𝑻 Triassialità

𝑇 e 𝑋 sono adimensionali, essi descrivono la componente idrostatica 𝜎௠ e il
terzo invariante del tensore deviatorico 𝐽ଷ, rispettivamente.

Entrambi sono normalizzati rispetto alla tensione equivalente
di Von Mises 𝜎௘௤

௏ெ



Coordinate di Haigh–Westergaard

22

Riassumendo:

• 𝜉 → componente idrostatica del tensore delle tensioni, dipende da 𝐼ଵ

• 𝜌 → componente deviatorica del tensore delle tensioni, dipende da 𝑠ଵ, 𝑠ଶ, 𝑠ଷ, ovvero da 𝐽ଶ

• 𝜃 → dipende dalle componenti deviatoriche, ovvero dipende 𝐽ଶ, 𝐽ଷ

Il punto P si può descrivere in tre differenti modi:

• 𝑃 = 𝜎ଵ, 𝜎ଶ, 𝜎ଷ coordinate principali

• 𝑃 = 𝜉, 𝜌, 𝜃 coordinate di Haigh–Westergaard

• 𝑃 = 𝐼ଵ, 𝐽ଶ, 𝐽ଷ coordinate in termini degli invarianti

Nei materiali duttili lo snervamento dipende solo da 𝐽ଶ von Mises  o da da 𝐽ଶ, 𝐽ଷ Tresca  ovvero è funzione solo
di 𝜌 o 𝜌, 𝜃. Quindi, sia per il criterio di Von Mises che per quello di Tresca lo snervamento non dipende dalla
componente idrostatica, ma solo da quella deviatorica. Al contrario, il danneggiamento è funzione degli
invarianti 𝐼ଵ, 𝐽ଶ, 𝐽ଷ.



COMPORTAMENTO 
ELASTICO ISOTROPO



Comportamento elastico isotropo
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Legge di Hooke: 𝜎 = 𝐸 𝜀

Legame costitutivo:      𝜀 =

𝜀௫
𝜀௬

𝜀௭

𝜀௫௬

𝜀௬௭

𝜀௭௫

=

ଵ
ா⁄ ିఔ

ா⁄ ିఔ
ா⁄

ିఔ
ா⁄ ଵ

ா⁄ ିఔ
ா⁄

ିఔ
ா⁄ ିఔ

ா⁄ ଵ
ா⁄

0        0        0
0        0        0
0        0        0

0        0        0
0        0        0
0        0        0

ଵ
ଶீ⁄ 0 0

0 ଵ
ଶீ⁄ 0

0 0 ଵ
ଶீ⁄

𝜎௫
𝜎௬

𝜎௭

𝜏௫௬

𝜏௬௭

𝜏௭௫

In forma compatta risulta:

𝜀 = 𝐷 ିଵ 𝜎

Esclusivamente in campo elastico e per materiali con comportamento isotropo la relazione è biunivoca e si può 
riscrivere:

𝜎 = 𝐷 𝜀

Il termine 𝐸 è il modulo di Young o di elasticità, il termine 𝜈 è il coefficiente di Poisson, mentre il termine 𝐺 è il 
modulo elastico tangenziale (o modulo di taglio) che è pari a:

𝐺 =
𝐸

2(1 + 𝜈)
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Legge di Hooke: 𝜎 = 𝐸 𝜀

Legame costitutivo:      𝜀 =

𝜀௫
𝜀௬

𝜀௭

𝜀௫௬

𝜀௬௭

𝜀௭௫

=

ଵ
ா⁄ ିఔ

ா⁄ ିఔ
ா⁄

ିఔ
ா⁄ ଵ

ா⁄ ିఔ
ா⁄

ିఔ
ா⁄ ିఔ

ா⁄ ଵ
ா⁄

0        0        0
0        0        0
0        0        0

0        0        0
0        0        0
0        0        0

ଵ
ଶீ⁄ 0 0

0 ଵ
ଶீ⁄ 0

0 0 ଵ
ଶீ⁄

𝜎௫
𝜎௬

𝜎௭

𝜏௫௬

𝜏௬௭

𝜏௭௫

Nel riferimento principale basta annullare i termini 𝜀௜௝ e 𝜏௜௝ con 𝑖 ≠ 𝑗, quindi la relazione risulta:

𝜀 =
𝜀ଵ
𝜀ଶ

𝜀ଷ

=

1
𝐸ൗ −𝜈

𝐸ൗ −𝜈
𝐸ൗ

−𝜈
𝐸ൗ 1

𝐸ൗ −𝜈
𝐸ൗ

−𝜈
𝐸ൗ −𝜈

𝐸ൗ 1
𝐸ൗ

𝜎ଵ
𝜎ଶ

𝜎ଷ

Per materiali isotropi le direzioni principali di tensioni e deformazioni coincidono.

Non c’è accoppiamento tra
deformazioni normali e
tensioni tangenziali

Non c’è accoppiamento tra
deformazioni tangenziali e
tensioni normali

Non c’è effetto Poisson per le
componenti tangenziali
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𝜀௫ =
1

𝐸
𝜎௫ − 𝜈(𝜎௬ + 𝜎௭ቁ + 𝛼∆𝑇

𝜀௬ =
1

𝐸
𝜎௬ − 𝜈(𝜎௫ + 𝜎௭൯ + 𝛼∆𝑇

𝜀௭ =
1

𝐸
𝜎௭ − 𝜈(𝜎௫ + 𝜎௬൯ + 𝛼∆𝑇

 

𝜀௫௬ =
1

2𝐺
𝜏௫௬

𝜀௬௭ =
1

2𝐺
𝜏௬௭

𝜀௭௫ =
1

2𝐺
𝜏௭௫

Le singole componenti valgono:

 𝜀ଵ =
1

𝐸
𝜎ଵ − 𝜈(𝜎ଶ + 𝜎ଷ൯ + 𝛼∆𝑇

 𝜀ଶ =
1

𝐸
𝜎ଶ − 𝜈(𝜎ଵ + 𝜎ଷ൯ + 𝛼∆𝑇

 𝜀ଷ =
1

𝐸
𝜎ଷ − 𝜈(𝜎ଵ + 𝜎ଶ൯ + 𝛼∆𝑇

Nel riferimento principale:

Definire una relazione più compatta per scrivere la legge di Hooke generalizzata per tutte e sei le componenti
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𝜀௫ =
1

𝐸
𝜎௫ − 𝜈(𝜎௬ + 𝜎௭ቁ =

𝜎௫

𝐸
− 𝜈

𝜎௬

𝐸
− 𝜈

𝜎௭

𝐸
+ 𝛼∆𝑇 + 𝜈

𝜎௫

𝐸
− 𝜈

𝜎௫

𝐸

𝜀௫ =
1 + 𝜈

𝐸
𝜎௫ −

𝜈

𝐸
(𝜎௫ + 𝜎௬ + 𝜎௭)  + 𝛼∆𝑇

𝜀௫ =
1

2𝐺
𝜎௫ −

𝜈

𝐸
𝐼ଵ + 𝛼∆𝑇

𝜀̿ → 𝜀௜௝ =
1

2𝐺
𝜎௜௝ − 𝛿௜௝

𝜈

𝐸
𝐼ଵ − 𝛼∆𝑇

𝛿௜௝ = 0 per componenti tangenziali

𝛿௜௝ ≠ 0 per componenti normali

Per le tensioni si riscrive come:

𝜎ധ → 𝜎௜௝ = 2𝐺 𝜀௜௝ − 𝛿௜௝ 𝛼∆𝑇 + 𝛿௜௝ 𝜆 (𝐼ଵ
ᇱ − 3𝛼∆𝑇) 𝐼ଵ = 𝜎௫ + 𝜎௬ + 𝜎௭ ; 𝐼ଵ

ᇱ = 𝜀௫ + 𝜀௬ + 𝜀௭

Il termine 𝜆 è una delle due costanti di Lamé (l’altra è G) e vale:

𝜆 =
𝜈 𝐸

1 + 𝜈 (1 − 2𝜈)



Comportamento elastico isotropo

28

In campo elastico per materiale isotropo, la legge di Hooke per tensioni deviatoriche 𝑠̿ e deformazioni
deviatoriche 𝑒̿ è pari a:

𝑒௜௝ =
1

2𝐺
𝑠௜௝

𝐼ଵ
ᇱ =

1

2𝐺
𝜎௫ − 𝛿௜௝

𝜈

𝐸
𝐼ଵ − 𝛼∆𝑇 +

1

2𝐺
𝜎௬ − 𝛿௜௝

𝜈

𝐸
𝐼ଵ − 𝛼∆𝑇 +

1

2𝐺
𝜎௭ − 𝛿௜௝

𝜈

𝐸
𝐼ଵ − 𝛼∆𝑇

𝐼ଵ
ᇱ =

1 − 2𝜈

𝐸
𝐼ଵ + 3𝛼∆𝑇

𝜀௠ =
1 − 2𝜈

𝐸
𝜎௠ + 𝛼∆𝑇

𝑒௜௝ = 𝜀௜௝ − 𝜀௠ =
1

2𝐺
𝜎௜௝ − 𝛿௜௝

𝜈

𝐸
3𝜎௠ − 𝛼∆𝑇 +

1 − 2𝜈

𝐸
𝜎௠ + 𝛼∆𝑇

𝑒௜௝ =
1 + 𝜈

𝐸
𝜎௜௝ − 𝜎௠ =

1 + 𝜈

𝐸
𝑠௜௝ =

1

2𝐺
𝑠௜௝

A seguire i passaggi per ricavare la relazione:

deformazione idrostatica 𝐽ଵ
ᇱ = 𝐽ଵ = 0

𝐽ଶ
ᇱ =

1

2
𝑒ଵ

ଶ + 𝑒ଶ
ଶ + 𝑒ଷ

ଶ =
𝐽ଶ

(2𝐺)ଶ

𝐽ଷ
ᇱ = 𝑒ଵ𝑒ଶ𝑒ଷ =

𝐽ଷ

(2𝐺)ଷ

componente 
deviatorica



CRITERI E SUPERFICI
DI SNERVAMENTO
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I criteri di snervamento legano la pericolosità dello stato tensionale multiassiale con la pericolosità di uno stato
equivalente uniassiale (monoassiale).

Sollecitazione 
multiassiale 𝝈ന

Sollecitazione 
monoassiale 𝝈𝒆𝒒

Sollecitazione limite 
del materiale 𝝈𝒍𝒊𝒎

Generalmente lo stato monoassiale limite comunemente impiegato per il confronto è ricavato dalla prova di
trazione, in quanto è il test meccanico più semplice da eseguire.

Di seguito si riportano il criterio di snervamento di Tresca e quello di Von Mises, normalmente impiegati per i
materiali duttili.



Il materiale in sollecitazione multiassiale arriva a snervamento quando la tensione equivalente raggiunge la
tensione di snervamento a trazione. Nel caso le tre tensioni principali siano così ordinate 𝜎ଵ ≥ 𝜎ଶ ≥ 𝜎ଷ, risulta:

𝜎௘௤ = 𝜎ଵ − 𝜎ଷ = 𝜎௟௜௠
்௥௔௭ = 𝜎଴

Il materiale duttile arriva a snervamento quando lo sforzo tangenziale massimo (taglio massimo) arriva ad un 
valore limite: 𝜏௠௔௫ = 𝜏௟௜௠

Ricordando i cerchi di Mohr:
𝜎ଵ − 𝜎ଷ = 2𝜏௠௔௫ = 2𝜏௟௜௠

Criteri di snervamento: Tresca (criterio del massimo sforzo tangenziale)

31

𝜏௟௜௠
்ோாௌ஼஺ =

𝜎଴

2 𝜎ଵ𝜎ଶ𝜎ଷ

𝜏ଷ

𝜏ଶ ≡ 𝜏୫ୟ୶

𝜏ଵ

𝜎

𝜏
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+𝜎଴

−𝜎଴

+𝜎଴
−𝜎଴

𝜎ଵ

𝜎ଶ 𝜎ଵ

𝜎ଷ

𝜎ଶ

trisettrice

𝑃ଵ

𝑃ଶ

𝑃ଷ

Piano 𝜋

Caso 2D (tensione piana 𝜎ଷ = 0) Caso 3D

𝑃ଵ è interno alla superficie di snervamento di Tresca, la sollecitazione è in
campo elastico; 𝜎ଵ − 𝜎ଷ < 𝜎଴

𝑃ଶ si trova sulla superficie: il materiale si trova in condizioni di incipiente
plasticizzazione; 𝜎ଵ − 𝜎ଷ = 𝜎଴

𝑃ଷ si trova "esterno" alla superficie di Tresca: sollecitazione in campo
plastico; 𝜎ଵ − 𝜎ଷ > 𝜎଴

Per i materiali duttili si può assumere con buona
approssimazione che i limiti di snervamento a
compressione e trazione siano (in modulo) uguali



Criteri di snervamento: Von Mises (massima energia di distorsione)
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Per materiali duttili, la condizione di snervamento si raggiunge quando l’energia di distorsione elastica
accumulata dal materiale nella sollecitazione multiassiale raggiunge un valore limite.

Tale limite per semplicità risulta pari alla massima energia di distorsione elastica accumulata nel caso di
sollecitazione monoassiale.

𝑈஽௜௦௧௢௥௦௜௢௡௘ =
1

2𝐺
𝐽ଶ       →       𝑈஽

ெ௨௟௧௜௔௫ = 𝑈஽
்௥௔௭ (௠௢௡௢௔௫)

Nel riferimento principale (caso 3D):

𝜎௘௤
௏ெ =

1

2
𝜎ଵ − 𝜎ଶ

ଶ + 𝜎ଶ − 𝜎ଷ
ଶ + 𝜎ଷ − 𝜎ଵ

ଶ = 𝜎௟௜௠ = 𝜎଴

Nel riferimenti princiaple (caso 2D):

𝜎௘௤
௏ெ =

1

2
𝜎ଵ

ଶ + 𝜎ଶ
ଶ + 𝜎ଵ𝜎ଶ = 𝜎௟௜௠ = 𝜎଴

In condizione di taglio puro, la tensione equivalente risulta essere:

𝜎௘௤
௏ெ = 3𝜏௫௬   𝑜𝑣𝑣𝑒𝑟𝑜   𝜏௟௜௠

௏ெ =
𝜎଴

3

Si ricorda che:

𝜎௘௤
௏ெ = 3𝐽ଶ = 3𝑠௜௝𝑠௜௝



Criteri di snervamento: Von Mises (massima energia di distorsione)
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+𝜎଴

−𝜎଴

+𝜎଴

−𝜎଴

𝜎ଵ

𝜎ଶ 𝜎ଵ

𝜎ଷ

𝜎ଶ

trisettrice
Piano 𝜋

Caso 2D (tensione piana 𝜎ଷ = 0) Caso 3D



Criteri di snervamento: confronto Von Mises - Tresca
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+𝜎଴

−𝜎଴

+𝜎଴

−𝜎଴

𝜎ଵ

𝜎ଶTresca
Von Mises

𝜎ଵ

𝜎ଷ

𝜎ଶ

Piano 𝜋

trisettrice

Caso 2D (tensione piana 𝜎ଷ = 0) Caso 3D

Il luogo dei punti del criterio di Tresca è sempre inscritto nel luogo dei punti del criterio di Von Mises, questo
significa che il criterio di Tresca risulta più conservativo rispetto a Von Mises.



Criteri di snervamento: superficie di snervamento
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Relazione analitica che identifica una generica superficie di snervamento:

𝑓 𝜎௜௝ = 𝐾

Esempio: per il criterio di Von Mises la funzione è:

൞
𝑓 𝜎௜௝ =

1

2
𝜎ଵ − 𝜎ଶ

ଶ + 𝜎ଶ − 𝜎ଷ
ଶ + 𝜎ଷ − 𝜎ଵ

ଶ

𝐾 = 𝜎௟௜௠ = 𝜎଴

La generica funzione 𝑓 𝜎௜௝ si può riscrivere come:

𝑓ᇱ 𝜎௜௝ = 0    𝑖𝑛 𝑐𝑢𝑖      𝑓ᇱ = 𝑓 − 𝐾

È noto che per lo snervamento conta solo la componente deviatorica, per cui la funzione risulta:

𝑓ᇱᇱ 𝑠௜௝ = 0

Un’altra opzione è quello di descrivere lo stato deviatorico, oltre che tramite le componenti 𝑠௜௝, dagli invarianti
deviatorici, ovvero:

𝑓ᇱᇱᇱ 𝐽ଶ, 𝐽ଷ = 0

funzione dello stato tensionale prestazione del materiale



Criteri di snervamento: superficie di snervamento
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Criterio di Von Mises:

𝑓௏ெ
ᇱᇱᇱ 𝐽ଶ = 0, poiché 𝜎௘௤

௏ெ = 3𝐽ଶ → 𝑓௏ெ 𝐽ଶ − 𝐾 = 0 → 3𝐽ଶ − 𝜎଴ = 0

Criterio di Tresca:

𝑓 ோ
ᇱᇱᇱ 𝐽ଶ, 𝐽ଷ = 0, poiché Von Mises dipende solo da 𝐽ଶ, mentre Tresca da entrambi gli invarianti

Il criterio di Tresca riscritto tramite gli invarianti risulta:

𝜎௘௤
்ோ = 4𝐽ଶ

ଷ + 27𝐽ଷ
ଶ − 3𝜎௟௜௠

ଶ  𝐽ଶ
ଶ + 96𝜎௟௜௠

ସ  𝐽ଶ − 64𝜎௟௜௠
଺ = 0

Se è verificata la seguente condizione, allora il materiale si trova in campo elastico e non ha raggiunto lo
snervamento:

𝑓ᇱ 𝜎௜௝ < 0

Che si può riscrivere anche nella seguente forma:

𝑓ᇱᇱ 𝑠ଵ, 𝑠ଶ, 𝑠ଷ < 0



Superficie di snervamento di Von Mises
Stati tensionali 𝑃(𝜎௜௝) e 𝑃′(𝜎௜௝)

𝜌௉ = 𝜌௉ᇲ (stessa componente deviatorica)

Stessa condizione di incipiente snervamento

Se giacciono sulla stessa generatrice allora si trovano entrambi
in condizione di incipiente snervamento.

Ne consegue la forma delle superfici di snervamento: siccome i punti che
hanno la stessa componente deviatorica giacciono su rette parallele alla
trisettrice, allora le superfici di snervamento devono avere come
generatrici delle rette parallele alla trisettrice.

La sola differenza tra i due stati tensionali 𝑃 e 𝑃’ è la componente idrostatica che risulta essere 𝜉௉ >
𝜉௉ᇲ tuttavia essa non influisce sulla criticità rispetto allo snervamento.

𝜎ଵ

𝜎ଷ

𝜎ଶ

trisettrice

Piano 𝜋

𝜌௉ᇲ

𝜌௉

𝑃ᇱ

𝑃

𝜉௉

𝜉௉ᇲ
Stessa componente deviatorica = stessa criticità

Criteri di snervamento: superficie di snervamento
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Superficie di snervamento di Von Mises

𝜎ଵ

𝜎ଷ

𝜎ଶ

trisettrice

Piano 𝜋

𝜌௉ᇲ

𝜌௉

𝑃ᇱ

𝑃

𝜉௉

𝜉௉ᇲ

Ai fini dello snervamento, è sufficiente osservare
cosa succede su un singolo piano deviatorico.

Piano 𝝅: 𝝃 = 𝟎, è possibile valutare la criticità dello stato tensionale ai
fini dello snervamento senza perdere nessuna informazione e
confrontarlo con altri stati tensionali semplicemente osservando la
componente deviatorica 𝝆.

Per convenienza si considera il piano di riferimento più
semplice: quello passante per l’origine del sistema di
riferimento, il piano 𝝅.

Criteri di snervamento: superficie di snervamento
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𝜎ଵ

𝜎ଷ

𝜎ଶ

trisettrice

Piano 𝜋

𝑃 = 𝑃ᇱ

𝜃

𝜎ଵ
ᇱ

𝜎ଷ
ᇱ𝜎ଶ

ᇱ

𝜌

O

Piano 𝜋
Von Mises

𝜌 = 2𝐽ଶ ricordando che: 𝜎௘௤
௏ெ = 3𝐽ଶ = 𝜎଴ 𝐽ଶ =

𝜎଴
ଶ

3
𝜌 = 2

𝜎଴
ଶ

3
=

2

3
 𝜎଴

Tutti gli stati tensionali con 𝜌 =
ଶ

ଷ
 𝜎଴ si trovano in condizione di incipiente snervamento.

L’angolo di Lode 𝜃
non conta nel
criterio di Von
Mises:

𝜃 si ha lo stesso 𝜌

3D 2D

Criteri di snervamento: superficie di snervamento
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𝜎ଵ

𝜎ଷ

𝜎ଶ

Piano 𝜋

trisettrice

O

Piano 𝜋𝜎ଵ
ᇱ

𝜎ଷ
ᇱ𝜎ଶ

ᇱ

O

Trazione pura 𝜃 = 0 → 𝑋 = 1

Compressione pura 𝜃 = 𝜋
3ൗ → 𝑋 = −1

Taglio puro 𝜃 = 𝜋
6ൗ → 𝑋 = 0

𝜃

𝜋

6

Massima 
differenza

A

B C

Tresca: esagono regolare ; Von Mises: cerchio2D3D

Criteri di snervamento: superficie di snervamento
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Esistono degli stati limite del criterio di Von Mises
coincidenti con alcuni stati limite del criterio di Tresca.

Stati monoassiali: trazione (A), compressione (B) 

Secondo il criterio di Tresca c’è dipendenza dall’angolo di
Lode 𝜃, ovvero è funzione di 𝐽ଶ e 𝐽ଷ

𝜌௠௔௫
்ோ = 𝜌௏ெ =

2

3
 𝜎଴

Condizione di massima differenza tra VM e TR: 𝜌௠௔௫
்ோ − 𝜌௠௜௡

்ோ

Stato di taglio puro (C)

Tresca: esagono regolare ; Von Mises: cerchio2D

Piano 𝜋𝜎ଵ
ᇱ

𝜎ଷ
ᇱ𝜎ଶ

ᇱ

O

Trazione pura 𝜃 = 0 → 𝑋 = 1

Compressione pura 𝜃 = 𝜋
3ൗ → 𝑋 = −1

Taglio puro 𝜃 = 𝜋
6ൗ → 𝑋 = 0

𝜃

𝜋

6

Massima 
differenza

A

B C

Criteri di snervamento: superficie di snervamento
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Condizione di massima differenza tra VM e TR: 𝜌௠௔௫
்ோ − 𝜌௠௜௡

்ோ

Stato di taglio puro (C)

𝜌௠௜௡
்ோ = 𝜌௏ெ cos

𝜋

6
=

2

3
 𝜎଴  

3

2
=

𝜎଴

2

Comportamento periodico ogni 60°:  0° ≤ 𝜃 ≤ 60°

𝜌௠௜௡
்ோ

𝜌௏ெ
=

3

2
≅ 0.866

Tresca: esagono regolare ; Von Mises: cerchio2D

Piano 𝜋𝜎ଵ
ᇱ

𝜎ଷ
ᇱ𝜎ଶ

ᇱ

O

Trazione pura 𝜃 = 0 → 𝑋 = 1

Compressione pura 𝜃 = 𝜋
3ൗ → 𝑋 = −1

Taglio puro 𝜃 = 𝜋
6ൗ → 𝑋 = 0

𝜃

𝜋

6

Massima 
differenza

A

B C

Criteri di snervamento: superficie di snervamento
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𝜎ଵ
ᇱ

𝜎ଷ
ᇱ𝜎ଶ

ᇱ

È dimostrabile che tutti i criteri di snervamento che si possono
teorizzare devono essere compresi tra l’esagono (in blu) interno al
cerchio di Von Mises (in verde) e l’esagono esterno (in rosso) al
cerchio di Von Mises.

Ordinando le tensioni tali per cui (𝜎ଵ ≥ 𝜎ଶ ≥ 𝜎ଷ), si può definire il
parametro 𝜇 (parametro di Lode):

𝜇 =
−2𝜎ଶ − 𝜎ଷ − 𝜎ଵ

𝜎ଵ − 𝜎ଷ

Criteri di snervamento: superficie di snervamento
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Comportamento materiale: snervamento & danneggiamento
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Snervamento: 
• Dipendenza da 𝝆 e/o 𝜽, ovvero da 𝑱𝟐 e/o 𝑱𝟑 (VM solo 𝐽ଶ ; Tresca 𝐽ଶ, 𝐽ଷ)
• Non dipendenza dalla componente idrostatica 𝜉 = 3𝜎௠

Dal punto di vista fisico, la componente deviatorica muove le dislocazioni ed è responsabile della
plasticizzazione.

Danneggiamento: 
• Dipendenza da 𝝃, 𝝆 e 𝜽, ovvero da 𝑰𝟏, 𝑱𝟐 e 𝑱ଷ, quindi dalla triassialità 𝑻 e dal parametro deviatorico 𝑿
• Maggiore è la componente idrostatica (triassialità), più critiche sono le condizioni di rottura

Dal punto di vista fisico, la triassialità è responsabile della nucleazione e crescita dei microvuoti, mentre il
parametro deviatorico governa lo scorrimento dei piani cristallini, il movimento delle dislocazioni e il
cedimento a taglio.

Il parametro deviatorico 𝑋 può essere espresso come angolo di Lode 𝜃, o anche tramite il parametro di Lode 𝜇.
Sono tutte forme equivalenti per esprimere lo stesso concetto.



Comportamento materiale: cosa succede superato 
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Sollecitazione multiassiale generica:

𝑃ଵ  :   𝑓ᇱ 𝜎௜௝ < 0 interno alla superficie, campo elastico

𝑃ଶ  :   𝑓ᇱ 𝜎௜௝ = 0 giacente sulla superficie , incipiente 
snervamento

𝑃ଷ  :   𝑓ᇱ 𝜎௜௝ ? esterno alla superficie di snervamento
"iniziale", deformazione plastica governata dalle leggi di
flusso plastico, danneggiamento irreversibile. Tanto più
lontano è 𝑃ଷ, tanto maggiore sarà la deformazione plastica
e più critico sarà il danneggiamento.

Esiste un punto critico tale per cui il materiale arriva a cedimento plastico? A che distanza si
trova dalla superficie di snervamento?
Esiste, ma la distanza non ha un valore fisso: dipende dal tipo di sollecitazione imposto al
materiale. Esistono degli strumenti matematici, i modelli di danno, che forniscono
un’indicazione di quanta 𝜀௣ il materiale può accumulare prima di arrivare a rottura.

𝜎ଵ

𝜎ଷ

𝜎ଶ

trisettrice

𝑃ଵ

𝑃ଶ

𝑃ଷ

superficie di 
snervamento



Comportamento materiale: cosa succede superato 
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Sollecitazione monoassiale di trazione:  𝑃ଵ
ᇱ → 𝑃ଶ

ᇱ → 𝑃ଷ
ᇱ

𝜎௬
ᇱ = 𝜎ᇱ

𝜎଴ = 𝜎௬

𝜎்௥௨௘

𝜀்௥௨௘

𝜀௣௟ 𝜀௘௟ =
𝜎ᇱ

𝐸

𝐸

𝐸

𝑊

Carico/scarico elastico

Carico/scarico elasto-plastico

Ricarico elasto-plastico

lavoro elastico 
recuperato

𝜎ଵ

𝜎ଷ

𝜎ଶ

trisettrice

𝑃ଶ
ᇱ

𝑃ଵ
ᇱ

𝑃ଷ
ᇱ

Prima superficie di 
snervamento

Snervamento materiale vergine: 𝜎௬

Snervamento materiale pre-deformato: 𝜎௬
ᇱ Lo snervamento di un materiale è funzione della deformazione plastica 𝜎௬ = 𝜎௬(𝜀௣)



Comportamento materiale: equivalente   
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Considerando un materiale sottoposto a sollecitazione multiassiale, il criterio di Von Mises 𝜎௘௤
௏ெ consente di

riportare lo stato di tensione multiassiale nel suo equivalente monoassiale ugualmente critico:

𝜎௘௤
௏ெ =

1

2
𝜎௫ − 𝜎௬

ଶ
+ 𝜎௬ − 𝜎௭

ଶ
+ 𝜎௭ − 𝜎௫

ଶ + 6 𝜏௫௬
ଶ + 𝜏௬௭

ଶ + 𝜏௭௫
ଶ

Riguarda solo le tensioni:   𝜎ധ → 𝜎௘௤
௏ெ

𝜀̿ → 𝜀௘௤,௣ esiste?

Come nel caso uniassiale la deformazione plastica fa variare la tensione di snervamento, quindi anche nel caso
multiassiale sarà la deformazione plastica l’unica responsabile della variazione di snervamento.

Ovvero, esiste una relazione che permette di associare la deformazione plastica del caso multiassiale, gestita da
𝜀௣̿, ad una deformazione plastica equivalente a quella del caso uniassiale?



Comportamento materiale: equivalente   
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Obiettivo: trovare la relazione 𝜀̿ → 𝜀௘௤,௣

Ipotesi di partenza: lavoro speso 𝑊 per deformare plasticamente il materiale

Caso monoassiale: 𝑊 = ∫ 𝑑𝑊
ఌ೛

଴
in cui 𝑑𝑊 = 𝜎௫ ȉ 𝑑𝜀௣ೣ

= 𝑑𝑊௨௡௜

L’obiettivo è verificare la seguente uguaglianza:   𝑑𝑊௨௡௜ = 𝜎௫ ȉ 𝑑𝜀௣ೣ
= 𝜎௘௤

௏ெ ȉ 𝑑𝜀௣,௘௤ = 𝑑𝑊௠௨௟௧௜

incremento di deformazione
plastica equivalente

𝑑𝜀௣,௘௤ =
2

3
(𝑑𝜀௣௟ ೣ

− 𝑑𝜀௣௟ ೥
)ଶ+(𝑑𝜀௣௟ ೤

− 𝑑𝜀௣௟ ೥
)ଶ+(𝑑𝜀௣௟ ೥

− 𝑑𝜀௣௟ ೣ
)ଶ+6 𝑑𝜀௣௟ ೣ೤

ଶ
+ 𝑑𝜀௣௟ ೤೥

ଶ
+ 𝑑𝜀௣௟ ೥ೣ

ଶ

Tale incremento vale:
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𝑑𝜀௣,௘௤ =
2

3
(𝑑𝜀௣௟ ೣ

− 𝑑𝜀௣௟ ೥
)ଶ+(𝑑𝜀௣௟ ೤

− 𝑑𝜀௣௟ ೥
)ଶ+(𝑑𝜀௣௟ ೥

− 𝑑𝜀௣௟ ೣ
)ଶ+6 𝑑𝜀௣௟ ೣ೤

ଶ
+ 𝑑𝜀௣௟ ೤೥

ଶ
+ 𝑑𝜀௣௟ ೥ೣ

ଶ

componenti incrementali del tensore della deformazione plastica

È necessario ragionare in termini incrementali in quanto la relazione
tra tensione-deformazione non è lineare in campo plastico

E഻ possibile ridurre al caso uniassiale 𝑑𝜀௣,௘௤, e controllare l’uguaglianza con 𝑑𝜀௣௟ೣ
(a titolo di esempio si è scelta 

la componente x)

Caso uniassiale per un
materiale isotropo:

in termini di 𝜀:

𝑑𝜀௣௟ ೣ
≠ 0

𝑑𝜀௣௟ ೤
= 𝑑𝜀௣௟ ೥

= −𝜈௣𝑑𝜀௣௟ ೣ
≠ 0

𝑑𝜀௣௟ ೣ೤
= 𝑑𝜀௣௟ ೤೥

= 𝑑𝜀௣௟ ೥ೣ
= 0

in termini di 𝜎: ቊ
𝜎௫ ≠ 0

𝜎௬ = 𝜎௭ = 𝜏௫௬ = 𝜏௫௭ = 𝜏௬௭ = 0
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Coefficiente di Poisson in campo elastico: 𝜈 = 0.3

Coefficiente di Poisson in campo plastico: 𝜈௣ = 0.5

In campo plastico il materiale si deforma senza variazione di volume
(trasformazione isocora), cosa non vera in campo elastico dove il
materiale si espande.

∆𝑉 = 0 ovvero      𝜀௫ + 𝜀௬ + 𝜀௭ = 0    →    𝜈௣ = 0.5

𝒅𝜺𝒑,𝒆𝒒 =
ଶ

ଷ
(𝑑𝜀௣௟ ೣ

− 𝑑𝜀௣௟ ೥
)ଶ+(𝑑𝜀௣௟ ೤

− 𝑑𝜀௣௟ ೥
)ଶ+(𝑑𝜀௣௟ ೥

− 𝑑𝜀௣௟ ೣ
)ଶ+6 𝑑𝜀௣௟ ೣ೤

ଶ
+ 𝑑𝜀௣௟ ೤೥

ଶ
+ 𝑑𝜀௣௟ ೥ೣ

ଶ
=

= 𝑑𝜀௣௟,௘௤ =
ଶ

ଷ
𝑑𝜀௣௟ ೣ

+ 0.5 𝑑𝜀௣௟ ೣ

ଶ
+ 0 + 𝑑𝜀௣௟ ೣ

+ 0.5 𝑑𝜀௣௟ ೣ

ଶ
+ 6 ȉ 0 =

=
ଶ

ଷ

ଽ

ସ
𝑑𝜀௣௟ ೣ

ଶ
+

ଽ

ସ
𝑑𝜀௣௟ ೣ

ଶ
=

ଶ

ଷ

ଽ

ଶ
𝑑𝜀௣௟ ೣ

ଶ
= 𝒅𝜺𝒑𝒍𝒙

Quindi riducendo 𝑑𝜀௣,௘௤ al caso uniassiale si ottiene:

Quindi è valida l’affermazione:

𝑑𝑊௨௡௜ = 𝑑𝑊௠௨௟௧௜
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Sollecitazione multiassiale generica (che include anche il caso monoassiale): 𝑃ଵ → 𝑃ଶ → 𝑃ଷ

In 𝑃ଵ il materiale è in campo elastico. Da 𝑃ଶ a 𝑃ଷ , il
materiale incrudisce e la superficie di snervamento evolve
in funzione dello stato tensionale.

Nella figura è riportata l’evoluzione della superficie di
snervamento, che consiste in un’espansione.

Possibili trasformazioni della superficie di snervamento:

• Espansione
• Traslazione
• Combinazione di espansione-traslazione

𝜎ଵ

𝜎ଷ

𝜎ଶ

trisettrice

𝑃ଵ

𝑃ଶ

𝑃ଷ

Superficie 
materiale "non 
deformato"

superficie
Snervamento
"aggiornata"

Superficie di snervamento “iniziale”:

3𝐽ଶ − 𝜎଴ = 0

"Nuova" superficie di snervamento:

3𝐽ଶ − 𝜎௬ 𝜀௣௟ = 0
Snervamento attualizzato, aggiornato
post deformazione plastica



Comportamento materiale: modelli di incrudimento
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Esistono diversi modelli per descrivere l’evoluzione della superficie di snervamento quando il materiale
incrudisce, e si diversificano in funzione delle condizioni di carico.

Incrudimento isotropico Incrudimento cinematico Incrudimento misto
isotropico-cinematico

(Espansione) (Traslazione)
(Espansione-traslazione)

Materiale sottoposto
ad una sollecitazione
monotona crescente

Materiale sottoposto
ad un carico ciclico
(es. carico-scarico)

𝜎ଵ

𝜎ଶ𝜎ଷ

𝜎ଵ

𝜎ଶ𝜎ଷ

effetto Bauschinger

𝜎ଵ

𝜎ଶ𝜎ଷ



Comportamento materiale: effetto Bauschinger
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Nel caso di carici ciclici, l’incrudimento cinematico puro e misto funziona meglio perché tiene
conto dell’ Effetto Bauschinger → asimmetria della curva tensione-deformazione ciclica

Materiale indeformato:

• Snervamento a trazione +𝜎଴

• Snervamento a compressione −𝜎଴

Superamento del limite elastico a trazione:

• Nuovo snervamento a trazione 𝜎௬, 

• Si ha un nuovo snervamento a compressione ≠ −𝜎௬ ed 
assume un valore pari a −𝜎௬

ᇱ tale per cui 𝜎௬
ᇱ < 𝜎௬

𝜎

𝜀

𝜎଴

𝜎௬

−𝜎௬
ᇱ

−𝜎଴

compressione

Asimmetria della curva 
stress-strain
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𝑓 𝜎௜௝ − 𝐾 = 0    𝑜𝑣𝑣𝑒𝑟𝑜   𝑓ᇱ 𝜎௜௝ = 0 generica funzione di snervamento che assume i valori:

• 𝑓ᇱ 𝜎௜௝ < 0 campo elastico (punto interno alla superficie);

• 𝑓ᇱ 𝜎௜௝ = 0 incipiente snervamento (punto sulla superficie);

• Superato lo snervamento iniziale, 𝑓ᇱ 𝜎௜௝ non sarà mai maggiore di zero in quanto la superficie si
espande/trasla contemporaneamente alla posizione che assume il nuovo punto che ne descrive lo stato
tensionale. Quindi il punto non potrà mai oltrepassare la superficie di snervamento, ma si muove con essa
nel mentre che quest’ultima evolve in funzione della deformazione plastica accumulata.

punto sulla superficie di snervamento, ma si sposta
verso la parte interna tornando in campo elastico

mantenimento delle condizioni di incipiente
plasticizzazione, il punto rimane sulla superficie

punto sulla superficie, ma si sposta verso la parte
esterna insieme alla superficie che sta
espandendo/traslando, ulteriore plasticizzazione

𝑑𝑓ᇱ =
డ௙ᇲ

డఙ೔ೕ
𝑑𝜎௜௝ < 0 scarico elastico

𝑑𝑓ᇱ =
డ௙ᇲ

డఙ೔ೕ
𝑑𝜎௜௝ = 0 carico neutro

𝑑𝑓ᇱ =
డ௙ᇲ

డఙ೔ೕ
𝑑𝜎௜௝ > 0 carico plastico

𝑓ᇱ 𝜎௜௝ = 0 
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In campo plastico è doveroso ragionare in termini di incremento di deformazione plastica (𝑑𝜀) in quanto non
esiste più la linearità tra tensione e deformazione tipica del campo elastico, definita dalle leggi di Hooke. La
relazione tra tensione e deformazione non è più univoca.

Esempio: materiale sottoposto ad uno stato multiassiale di trazione e di torsione, (sollecitazione mista 𝜎 − 𝜏)

Due storie di carico: 
• A→B→C→M→Z
• A→D→E→N→Z

𝜎

𝜏

E
N

D

O=A M B C

Z

Stato tensionale 
sul piano 𝜎 − 𝜏

Superficie di
snervamento

A→B→C→M→Z (ipotesi di incrudimento isotropico)

• A→B: carico monoassiale 𝜎௫ fino alle condizioni di snervamento

• B → C: aumento della sollecitazione con plasticizzazione del
materiale (evoluzione della superficie)

• C→M: scarico

• M→Z: sollecitazione elastica di taglio 𝜏௫௬

• Deformazione plastica risultante pari a 𝜀௣௟ ೣ
ottenuta nel passaggio

B→C
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In campo plastico è doveroso ragionare in termini di incremento di deformazione plastica (𝑑𝜀) in quanto non
esiste più la linearità tra tensione e deformazione tipica del campo elastico, definita dalle leggi di Hooke. La
relazione tra tensione e deformazione non è più univoca.

Esempio: materiale sottoposto ad uno stato multiassiale di trazione e di torsione, (sollecitazione mista 𝜎 − 𝜏)

Due storie di carico: 
• A→B→C→M→Z
• A→D→E→N→Z

𝜎

𝜏

E
N

D

O=A M B C

Z

Stato tensionale 
sul piano 𝜎 − 𝜏

Superficie di
snervamento

A→D→E→N→Z (ipotesi di incrudimento isotropico)

• A→D: sollecitazione elastica di taglio 𝜏௫௬ fino alle condizioni di
snervamento

• D →E: aumento della sollecitazione plasticizzando il materiale
(evoluzione della superficie)

• E→N: scarico (stessa quota di Z)

• N→Z: sollecitazione 𝜎 fino in Z

• Deformazione plastica risultante pari a 𝜀௣௟ ೣ೤
ottenuta nel

passaggio D→E



Comportamento materiale: non linearità stress-strain

58

In campo plastico è doveroso ragionare in termini di incremento di deformazione plastica (𝑑𝜀) in quanto non
esiste più la linearità tra tensione e deformazione tipica del campo elastico, definita dalle leggi di Hooke. La
relazione tra tensione e deformazione non è più univoca.

Esempio: materiale sottoposto ad uno stato multiassiale di trazione e di torsione, (sollecitazione mista 𝜎 − 𝜏)

Due storie di carico: 
• A→B→C→M→Z
• A→D→E→N→Z

𝜎

𝜏

E
N

D

O=A M B C

Z

Stato tensionale 
sul piano 𝜎 − 𝜏

Superficie di
snervamento

• Diverse storie di carico che hanno stessi stati tensionali iniziale-finale
hanno deformazioni plastiche diverse. Quindi è falso affermare che
ad uno stato di sollecitazione è associato un solo stato di
deformazione.

• Lo stato di deformazione è funzione della storia di carico applicata.
Questo è la ragione per cui è necessario ragionare in termini di
incrementi di deformazione in campo plastico.

• Superato il limite elastico, le deformazioni accumulate in funzione
dello stato tensionale calcolano tramite le leggi di flusso plastico, le
quali consentono di associare alle tensioni le deformazioni
incrementali che si accumulano in campo plastico.
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Unica condizione in cui decade la dipendenza dalla storia di carico: ipotesi di carico proporzionale (proportional
loading, P.L.)

𝜎ଵ

𝜎ଷ

𝜎ଶ

𝑃௜

𝑃௙

𝑃௜ = 𝜎ଵ
௢, 𝜎ଶ

௢, 𝜎ଷ
௢ stato tensionale iniziale (eventualmente 

nullo)

𝑃௙ = 𝜎ଵ, 𝜎ଶ, 𝜎ଷ stato tensionale finale

Da 𝑃௜ a 𝑃௙ due strade: una generica e una lineare

Per il percorso lineare si possono definire le seguenti relazioni
tra lo stato iniziale e finale:

൞

𝜎ଵ = 𝐾𝜎ଵ
௢

𝜎ଶ = 𝐾𝜎ଶ
௢

𝜎ଷ = 𝐾𝜎ଷ
௢

• Percorso lineare = percorso di carico proporzionale
C’è proporzionalità tra le tensioni iniziali e quelle finali

• 𝐾 funzione monotona crescente
• Il percorso curvilineo non è un percorso proporzionale

𝜎ଵ

𝜎ଶ
=

𝜎ଵ
௢

𝜎ଶ
௢    ;    

𝜎ଶ

𝜎ଷ
=

𝜎ଶ
௢

𝜎ଷ
௢    ;    

𝜎ଷ

𝜎ଵ
=

𝜎ଷ
௢

𝜎ଵ
௢    →    𝜎௘௤

௏ெ = 𝐾𝜎௘௤
௢,௏ெ
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Per leghe metalliche duttili il danneggiamento dipende dallo stato tensionale e dalla deformazione plastica
accumulata.

I modelli di danneggiamento duttile, sono modelli matematici che consentono di:
stimare quanta deformazione plastica può accumulare il materiale sottoposto ad uno specifico stato tensionale
prima di arrivare a cedimento plastico. Ovvero permettono di predire le condizioni di incipiente collasso plastico. Ciò
equivale a stimare la duttilità del materiale.

Il danneggiamento (𝑫) ha le seguenti caratteristiche:

• incrementa proporzionalmente con la deformazione plastica equivalente accumulata 𝜀௣
௘௤ (da ora in avanti

identificata con 𝜀௣);
• dipende dalle leggi di flusso plastico;
• dipende dalla storia di carico, ovvero dal tensore delle tensioni 𝜎ധ;
• è irreversibile
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𝜎௧௥௨௘

𝜎௦

𝐷 = 𝐷௖௥௜௧௜௖௢ = 1
0 < 𝐷 < 1

𝜀௣ = 𝜀௙

𝐷 = 0

Cedimento plastico

Inizio del danno

Campo 
elastico

Campo 
plastico

𝜀௧௥௨௘

Convenzione assunta:

• Condizione materiale sano 𝐷 = 0

• Condizione di incipiente rottura 𝐷 = 1 quando 𝜀௣ = 𝜀௙

N.b: considerazioni valide per sollecitazione
mantenuta monoassiale fino all’istante di
rottura
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1° classificazione: basata
sull’accoppiamento del
comportamento plastico

Modelli accoppiati (coupled): le grandezze che governano l’accumulo del danno
influenzano il comportamento plastico e viceversa

Modelli disaccoppiati (uncoupled): le grandezze che governano l’accumulo del danno
sono indipendenti dal comportamento plastico. La grandezza 𝐷 risulta uno scalare che
si può ricavare in fase di post-processing

2° classificazione: basata
sul principio ispiratore

Modelli micromeccanici: analizzano il danno 𝐷 in funzione della microstruttura,
ovvero analizzando l’evoluzione dei microvuoti (nucleazione, crescita, coalescenza) e
la presenza dei siti di inclusione; (modelli GTN, etc.)

Modelli Continum Damage Mechanics (CDM): si basano su principi termodinamici;
(modelli Lemaitre, Bonora, etc.)

Modelli empirici: definiscono una legge empirica basata su dati sperimentali, la quale
descrive l’accumulo del danno 𝐷 in funzione della deformazione plastica accumulata;
(modelli Wierzbicki, Mohr, Coppola, etc.)
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Espressione generale dei modelli empirici:

Il danno 𝐷 è una grandezza scalare che aumenta proporzionalmente con la deformazione plastica accumulata
𝜀௣ pesata rispetto ad una funzione dello stato tensionale in quanto stati tensionali diversi portano a diversi
livelli di danno a parità di incremento di deformazione plastica. Quando il danneggiamento raggiunge un valore
critico (normalizzato a D=1) il materiale cede. Questo avviene per un livello di deformazione plastica
equivalente pari a 𝜀௣ = 𝜀௙

Lo stato tensionale si può descrivere tramite la triassialità T e il parametro deviatorico X (legato all’angolo di
Lode), ovvero tramite la parte idrostatica e deviatorica del tensore delle tensioni

𝐷 =  න 𝛤 𝑇, 𝑋  𝑑𝜀௣

ఌ೛

଴

𝐷 =  න 𝛤 𝜎ധ, 𝜀 ̿  𝑑𝜀௣

ఌ೛

଴

         𝐷 ∈ [0,1]

𝑇 =
𝜎௠

𝜎௘௤
௏ெ

𝑋 =
27

2 

𝐽ଷ

𝜎௘௤
௏ெ ଷ            𝑋 ∈ [−1,1]
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Triassialità T e deformazione plastica accumulabile dal materiale:

Estrusione

Laminazione

Piegatura

Trafilatura

𝑇

𝜀௙

-0.33 0.330 0.8
Compressione Taglio Trazione

𝜀𝑝଴.଼

𝜀௣଴.ଷଷ

𝜀௣ି଴.ଷଷ

Direzione in cui il materiale può essere maggiormente deformato plasticamente

𝜀௣ି଴.ଷଷ > 𝜀௣଴.ଷଷ > 𝜀𝑝଴.଼
Sperimentalmente è noto che l’andamento della 𝜀௣

è descrescente rispetto alla triassialità 𝑇.

Nel grafico si riportano
come esempio alcuni
processi produttivi di
deformazione a freddo
e i valori tipici della
triassialità T associati ad
essi
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Modelli empirici classici: il danno è funzione solo della triassialità 𝑇. Questi modelli
sono ormai superati in quanto nuovi studi hanno dimostrato che l’evoluzione del
danno dipende anche dalla componente deviatorica dello stato tensionale, ovvero
anche da 𝑋.

Modelli empirici recenti: dipendenza sia da 𝑇 che da 𝑋. In particolare si è osservato
sperimentalmente che al decrescere del modulo del parametro deviatorico 𝑋 è
associata una minore quantità di deformazione plastica accumulabile, ovvero una
minore duttilità.

Riassumendo:
௙ (minore duttilità)

௙ (minore duttilità)

𝐷 =  න 𝛤 𝑇, 𝑋  𝑑𝜀௣

ఌ೛

଴

𝐷 =  න 𝛤 𝑇  𝑑𝜀௣

ఌ೛

଴
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Ipotesi di carico proporzionale (proportional loading, P.L.) 𝑇 e 𝑋 costanti, ovvero 𝛤 costante 𝐷 = 𝛤 𝑇, 𝑋 න 𝑑𝜀௣

ఌ೛

଴

Considerando la condizione critica di inizio rottura (𝜀௣ = 𝜀௙ , 𝐷 = 1) si ottiene:      𝐷 =  𝛤 𝑇, 𝑋 ȉ 𝜀௙ = 1 ovvero:

௙
ିଵ

𝜺𝒇

𝑻

𝑿

Tipico andamento della superficie di frattura
(fracture surface o fracture locus) nei modelli recenti



௙
ିଵ

𝜺𝒇

𝑻

𝑿

Superficie di frattura 

• Un punto generico di coordinate (𝑇, 𝑋, 𝜀௣) individua uno specifico stato tensionale (𝑇, 𝑋)
a cui è associato il corrispondente valore di deformazione plastica accumulata (𝜀௣)

• I punti appartenenti alla superficie sono definiti per 𝐷 = 1,
quindi hanno coordinate (𝑇, 𝑋, 𝜀௣ ≡ 𝜀௙)

• La superficie di frattura associa ad uno specifico stato
tensionale (𝑇, 𝑋) il corrispondente valore di deformazione
plastica a rottura 𝜀௙

• La superficie fornisce una stima della duttilità

• Il danno parziale accumulato si può 
esprimere anche come:

𝐷 =
𝜀௣

𝜀௙

• Punti sulla superficie: 𝐷 =
𝜀௣

𝜀௙
= 1

• Punti al di sotto della superficie 0 < 𝐷 =
𝜀௣

𝜀௙
< 1

Modelli di danno duttile (P.L.) : superficie di frattura
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௙
ିଵ

𝜺𝒇

𝑻

𝑿

Superficie di frattura 

In caso di quasi-carico proporzionale (quasi-proportional
loading), in cui le grandezze 𝑇 e 𝑋 variano leggermente, si
assumono i valori medi 𝑇௔௩௚ e 𝑋௔௩௚ come rappresentativi
dell’intera storia di carico, pesati sulla deformazione plastica
accumulata. In questo modo è possibile considerare un solo
valore di 𝑇 e 𝑋 al fine di rendere la funzione 𝛤 nuovamente
costante, portarla fuori dall’integrale e ricavare 𝜀௙.

𝑇௔௩௚ =
1

𝜀௙
න 𝑇 𝜀 𝑑𝜀௣

ఌ೑

଴

𝑋௔௩௚ =
1

𝜀௙
න 𝑋 𝜀 𝑑𝜀௣

ఌ೑

଴

Quasi-proportional loading
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Test sperimentali: prove di 
trazione, di torsione, deformazione 
piana, biassiali trazione-taglio, 
compressione, etc. Misurazione curve 
globali (forza-spostamento)

Test sperimentali: prove di 
trazione, di torsione, deformazione 
piana, biassiali trazione-taglio, 
compressione, etc. Misurazione curve 
globali (forza-spostamento)

Simulazioni numeriche dei test 
sperimentali: metodo agli elementi 
finiti (FEM)

Simulazioni numeriche dei test 
sperimentali: metodo agli elementi 
finiti (FEM)

Stima grandezze locali nel punto 
critico nelle condizione di inizio 
rottura per ogni test: deformazione 
plastica a rottura 𝜺𝒇, triassialità T e
parametro deviatorico X

Stima grandezze locali nel punto 
critico nelle condizione di inizio 
rottura per ogni test: deformazione 
plastica a rottura 𝜺𝒇, triassialità T e
parametro deviatorico X

Ottenimento della superficie di 
frattura tramite un algoritmo di 
minimizzazione, utilizzando i punti 
critici (T,X, 𝜀௙) dei singoli test

Ottenimento della superficie di 
frattura tramite un algoritmo di 
minimizzazione, utilizzando i punti 
critici (T,X, 𝜀௙) dei singoli test

Esempio
di provini 

convenzionali

Plane Strain
(PS)

Torsion
(Tors)

Round Bar
(RB)

Round 
Notched Bar 

(RNB)

0

1

2

3

4

0 0.2 0.4 0.6 0.8 1 1.2

Fo
rz

a 
[k

N
]

Spostamento [mm]

Rottura
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Test sperimentali: prove di trazione, 
di torsione, deformazione piana, 
biassiali trazione-taglio, 
compressione, etc. Misurazione curve 
globali (forza-spostamento)

Test sperimentali: prove di trazione, 
di torsione, deformazione piana, 
biassiali trazione-taglio, 
compressione, etc. Misurazione curve 
globali (forza-spostamento)

Simulazioni numeriche dei test 
sperimentali: metodo agli elementi 
finiti (FEM)

Simulazioni numeriche dei test 
sperimentali: metodo agli elementi 
finiti (FEM)

Stima grandezze locali nel punto 
critico nelle condizione di inizio 
rottura : deformazione plastica a 
rottura 𝜺𝒇, triassialità T e parametro 
deviatorico X

Stima grandezze locali nel punto 
critico nelle condizione di inizio 
rottura : deformazione plastica a 
rottura 𝜺𝒇, triassialità T e parametro 
deviatorico X

Ottenimento della superficie di 
frattura tramite un algoritmo di 
minimizzazione, utilizzando i punti 
critici (T,X, 𝜀௙) dei singoli test

Ottenimento della superficie di 
frattura tramite un algoritmo di 
minimizzazione, utilizzando i punti 
critici (T,X, 𝜀௙) dei singoli test

Per ogni test, nel punto critico del provino, si ricava
l’evoluzione di 𝟏 𝟐 𝟑 𝒑 e in particolare 𝒇 imponendo
lo spostamento a rottura sperimentale

RB

RNB

TORS

PS

Modelli di danno duttile (P.L.) : procedura di calibrazione
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𝑻

𝑿

𝜺𝒇

Provino cilindro 
torsione (TORS)

Provino di trazione 
cilindrico liscio (RB)

Provino di trazione 
cilindro con intaglio 
(RNB10)

Provino di trazione 
cilindro con intaglio 
più severo (RNB6)

Provino di 
compressione 
(COMPR)

Provino di trazione in 
deformazione piana (PS)

Test sperimentali: prove di trazione, 
di torsione, deformazione piana, 
biassiali trazione-taglio, 
compressione, etc. Misurazione curve 
globali (forza-spostamento)

Test sperimentali: prove di trazione, 
di torsione, deformazione piana, 
biassiali trazione-taglio, 
compressione, etc. Misurazione curve 
globali (forza-spostamento)

Simulazioni numeriche dei test 
sperimentali: metodo agli elementi 
finiti (FEM)

Simulazioni numeriche dei test 
sperimentali: metodo agli elementi 
finiti (FEM)

Stima grandezze locali nel punto 
critico nelle condizione di inizio 
rottura : deformazione plastica a 
rottura 𝜺𝒇, triassialità T e parametro 
deviatorico X

Stima grandezze locali nel punto 
critico nelle condizione di inizio 
rottura : deformazione plastica a 
rottura 𝜺𝒇, triassialità T e parametro 
deviatorico X

Ottenimento della superficie di 
frattura tramite un algoritmo di 
minimizzazione

Ottenimento della superficie di 
frattura tramite un algoritmo di 
minimizzazione

Per ogni test/simulazione ottiene la terna (𝑇, 𝑋, 𝜀௙)

Modelli di danno duttile (P.L.) : procedura di calibrazione
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Test sperimentali: prove di trazione, 
di torsione, deformazione piana, 
biassiali trazione-taglio, 
compressione, etc. Misurazione curve 
globali (forza-spostamento)

Test sperimentali: prove di trazione, 
di torsione, deformazione piana, 
biassiali trazione-taglio, 
compressione, etc. Misurazione curve 
globali (forza-spostamento)

Simulazioni numeriche dei test 
sperimentali: metodo agli elementi 
finiti (FEM)

Simulazioni numeriche dei test 
sperimentali: metodo agli elementi 
finiti (FEM)

Grandezze locali nel punto critico 
nelle condizione di inizio rottura : 
deformazione plastica a rottura 𝜺𝒇, 
triassialità T e parametro deviatorico X

Grandezze locali nel punto critico 
nelle condizione di inizio rottura : 
deformazione plastica a rottura 𝜺𝒇, 
triassialità T e parametro deviatorico X

Ottenimento della superficie di 
frattura tramite un algoritmo di 
minimizzazione

Ottenimento della superficie di 
frattura tramite un algoritmo di 
minimizzazione

Provino cilindro 
torsione (TORS)

Provino di trazione 
cilindrico liscio (RB)

Provino di trazione 
cilindro con intaglio 
(RNB10)

Provino di trazione in 
deformazione piana (PS)

Provino di 
compressione 
(COMPR)

𝑻

𝑿

𝜺𝒇

Provino di trazione 
cilindro con intaglio 
più severo (RNB6)

La procedura di calibrazione va eseguita per ogni materiale di cui si 
vuole stimare la duttilità

Modelli di danno duttile (P.L.) : procedura di calibrazione
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La superficie è identificata dalle costanti (𝒄𝟏, 𝒄𝟐, … , 𝒄𝒊 ) specifiche del modello adottato, oltre che essere funzione di 𝑇 e
𝑋. Tali costanti assumono valori diversi in base al materiale scelto e governano sia la forma che la «quota» della superficie
di frattura nello spazio (𝑇, 𝑋, 𝜀௙). Si ricavano nell’ultima fase della procedura di calibrazione (algoritmo di minimizzazione).

𝑇

𝑋

𝜀௙

𝑋

𝑇

𝜀௙ Distanza tra punti e superficie pre-ottimizzazione

Tramite un algoritmo matematico di minimizzazione, immettendo dei valori di primo tentativo delle costanti, si
trova il valore delle costanti tali per cui la superficie di rottura risulta il più vicino possibile ai punti sperimentali
(minimizzazione distanza), quest’ultimi individuati ciascuno dalla propria terna (𝑇, 𝑋, 𝜀௙).

Superficie frattura = 𝑓(𝑇, 𝑋, 𝜀௙, 𝒄𝟏, 𝒄𝟐, … , 𝒄𝒊)

Superficie ottimizzata
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Esistono diverse funzioni 𝛤 in base al modello di danno scelto. I primi modelli di danno sviluppati erano
funzione della sola 𝑇, mentre recentemente si è dimostrato che il danneggiamento duttile dipende sia dalla
triassialità 𝑇, sia dal parametro deviatorico 𝑋 (angolo di Lode).

𝜀௙ = 𝛤ିଵ 𝑇Modelli datati:

𝜀௙ = 𝛤ିଵ 𝑇, 𝑋Modelli più recenti:

Il luogo dei punti è il piano 𝑇, 𝜀௙

Il luogo dei punti è lo spazio 𝑇, 𝑋, 𝜀௙

Di seguito si riportano alcuni modelli dipendenti dalla sola 𝑇 e altri modelli funzione di 𝑇 e 𝑋
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𝐷 = න
1

𝜀௙
𝑑𝜀௣

ఌ೑

଴

Maximum equivalent strain

Il materiale arriva a cedimento (𝐷 = 1) quando la deformazione plastica accumulata raggiunge il valore critico
di rottura 𝜀௙.

Si calibra attraverso l’esecuzione di una sola prova meccanica, generalmente RB, da cui si ricava 𝜀௙.

𝜀௙ = costante
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𝐷 = න 𝑐ଵ 𝑒 ௖మ்  𝑑𝜀௣

ఌ೑

଴

In condizioni di carico proporzionale (P.L.) 𝜀௙(𝑇) =  𝑐ଵ𝑒ି஼మ்

Rice and Tracey (RT)

T

𝜀௙

RB
RNB 10

RNB 2

I termini 𝑐ଵ e 𝑐ଶ sono le costanti del materiale che si ricavano
tramite la procedura di calibrazione. Per ricavarle è necessario
eseguire almeno due prove meccaniche: RB e RNB

Il numero affianco alla dicitura RNB indica il raggio
dell’intaglio. Più severo è l’intaglio e maggiore sarà la
triassialità, ciò significa una minore capacità di accumulare
deformazione plastica.
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𝜀௙(𝑇) =  𝑐ଵ + 𝑐ଶ𝑒ି௖య் 1 + 𝑐ସ𝑙𝑛
𝜀௣̇

𝜀଴̇
1 + 𝑐ହ

𝑇 − 𝑇଴

𝑇௠௘௟௧ − 𝑇଴

Johnson – Cook (JC) Ipotesi di P.L.
• 𝜀௣̇ velocità di deformazione (strain rate)
• 𝜀଴̇ strain rate di riferimento
• 𝑇௠௘௟௧ temperatura di fusione
• 𝑇଴ temperatura di riferimento

Il modello JC è costituito da tre blocchi: la prima parentesi contiene la formulazione di Rice and Tracey. La
seconda parentesi tiene conto dell’effetto di sollecitazioni dinamiche (che variano molto velocemente nel
tempo). La terza parentesi tiene conto dell’effetto della temperatura.

In condizioni statiche e a temperatura ambiente la formulazione si riduce a: 𝜀௙ =  𝑐ଵ + 𝑐ଶ𝑒ି௖య்

Costanti di calibrazione: 𝑐ଵ, 𝑐ଶ, 𝑐ଷ, 𝑐ସ, 𝑐ହ

Prove meccaniche: RB e RNB condotte a diversa velocità di deformazione e diversa temperatura

Modello usato per gestire condizioni di crash test, impatto o processi di stampaggio veloce

effetto 
velocità di deformazione

effetto
temperatura
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Wierzbicki-Bao

𝜀௙ 𝑇, 𝑋 = 𝑐ଵ𝑒ି௖మ் − 𝑐ଵ𝑒ି௖మ் − 𝑐ଷ𝑒ି௖ర் 1 − 𝑋
ଵ
௡

௡

Per valori di X=1 la formulazione si riduce al modello di Rice and Tracey

Costanti di calibrazione: 𝑐ଵ, 𝑐ଶ, 𝑐ଷ, 𝑐ସ

Il termine 𝑛 è un parametro del materiale legato alla legge costitutiva del materiale: 𝜎 = 𝐾𝜀௡

Prove meccaniche: RB, RNB, TORS, PS, etc. È importante che vengano eseguite prove in cui si possa osservare
sia l’effetto della triassialità (RB, RNB), sia l’effetto del parametro deviatorico (TORS, PS).
Si possono eseguire anche prove multiassiali trazione-torsione, compressione-torsione, trazione-taglio,
compressione-taglio.
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Wierzbicki-Bai (Modified Mohr-Coulomb MMC)

𝜀௙(𝑇, 𝑋) =
𝐾

𝑐ଶ

1 + 𝑐ଵ
ଶ

3
cos

𝜋

6
−

1

3
𝑎𝑟𝑐𝑐𝑜𝑠 𝑋 + 𝑐ଵ 𝑇 +

1

3
sin

𝜋

6
−

1

3
𝑎𝑟𝑐𝑐𝑜𝑠 𝑋

ି 
ଵ
௡

A volte il modello è espresso tramite il parametro di Lode 𝜃 anziché esplicitare il parametro deviatorico 𝑋.
Si ricordano le espressioni di conversione tra le due grandezze:

X = cos 3𝜃      ;       𝜃 =
1

3
arccos(𝑋)

Costanti di calibrazione: 𝑐ଵ, 𝑐ଶ

Parametri legge costitutiva del materiale: 𝐾, 𝑛 (𝜎 = 𝐾𝜀௡)

Prove meccaniche: RB, RNB, TORS, PS, prove multiassiali, etc.
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Coppola-Cortese (CC)

𝜀௙(𝑇, 𝑋) =
1

𝑐ଵ
𝑒ି௖మ்

𝑐𝑜𝑠 𝛽
𝜋
6

−
1
3

arccos 𝛾

𝑐𝑜𝑠 𝛽
𝜋
6

−
1
3

arccos 𝛾X

ଵ
௡

La prima parentesi gestisce l’effetto della triassialità, mentre la seconda parentesi tiene conto dell’effetto del
parametro deviatorico.

Costanti di calibrazione: 𝑐ଵ, 𝑐ଶ, 𝛽, 𝛾

Parametri legge costitutiva del materiale: 𝑛 (𝜎 = 𝐾𝜀௡)

Prove meccaniche: RB, RNB, TORS, PS, prove multiassiali, etc.


