CORSO DI ELEMENTI COSTRUTTIVI DELLE MACCHINE (Nuovo Ordinamento)

ESAME DELL'11 SETTEMBRE 2003

Tre molle elicoidali uguali (m_1 , m_2 ed m_3) sono montate all'interno di un sistema meccanico con un carico di precompressione di 1000 N. Ad ogni ciclo di funzionamento del meccanismo, le molle m_1 ed m_2 subiscono un abbassamento rispettivamente delle quantità $d_1 = 18 \text{ mm}$ e $d_2 = 15 \text{ mm}$ (rispetto alla loro altezza a riposo) mentre la molla m_3 è schiacciata a pacchetto.

Nelle prescrizioni di mantenimento del sistema è indicato di eseguire ad ogni revisione le seguenti operazioni:

- la molla m_3 viene rimossa;
- la molla m_2 prende il posto di m_3 ;
- la molla m_1 prende il posto di m_2 ;
- una nuova molla è collocata al posto di m_1 .

Utilizzando la teoria lineare di cumulo del danno di Miner, si calcoli ogni quanti cicli di carico n debba essere eseguita la revisione del sistema in modo che la molla più affaticata del meccanismo lavori con un coefficiente di sicurezza X pari a 1.25.

Si valuti inoltre di quanto possa essere aumentato l'intervallo tra gli interventi di manutenzione ottimizzando la successione di scambio e sostituzione delle molle.

Dati:

Materiale: $\sigma_R = 1080 \text{ MPa}$, $\sigma_S = 950 \text{ MPa}$, $\sigma_{LF} = 350 \text{ MPa}$

Diametro elica media: 60 mm Diametro filo: 13.5 mm Angolo di avvolgimento: 5° Numero spire attive: 6

Numero spire non attive: 1