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1. Introduction 

 

The finite element method (FEM) is an approximate method well known to the engineering community for 

the solution of partial differential equations (PDE) governing boundary and initial value problem (Hughes, 

1987a) (Chung, 1978). Such a method transforms continuum problems into systems of algebraic equations 

proceeding via: 

• the use of variational principles or weighted residual methods to transform PDE into integral equations; 

• the sub-division of computational domain into many small elements of convenient shapes so that a basis 

for the variable interpolation could be defined. 

The residual integral FE formulation is able to easily handle complex geometries and derivative type 

(Neumann) boundary conditions due to its intrinsic properties of working of unstructured domain discretization. 

The FEM originally developed in the 1950's  for aircraft structural analysis has been successfully applied to 

the field of non-structural problem such as fluid flows and electromagnetism starting from the work of 

Zienkiewicz (1965). The close relationship between finite element analysis and classical mathematical 

approaches, such the calculus of variations or the weighted residual methods, has established the FEM as an 

important branch of approximation theory. 

Variational principles, used in the Rayleigh-Ritz method, unfortunately cannot always be found in fluid 

problems, particularly when the differential equations are not self-adjoint. Thus the weighted residual method is 

often applied since it requires no variational principles. Such a method utilizes a concept of orthogonal 

projection of a residual of a differential equation onto a subspace spanned by certain weighting functions. In the 

finite element method, we may use either variational principles when they exist, or weighted residuals through 

approximations.  

The weighted residuals formulation is based on the characterization of two sets of functional spaces. The first 

is to be composed of the approximation or trial functions, while the second collection has to contain the 

variations or weighting functions. Although there are several ways of choosing such classes of functions, in 

finite element applications to fluid dynamics the Galerkin or Bubnov-Galerkin method, where the introduced 

functional spaces are composed by identical basis functions, is considered the most convenient tool for 

formulating FE models.  

Two main instabilities origins could be detected in case of a straightforward application of the Galerkin FEM 

in the field of fluid dynamics of incompressible flows. Such instabilities, directly related to the mathematical 

character of modeling equations, could be in principle controlled by choosing proper finite element 

discretizations (in terms of both the mesh refinement and the pair of primitive variables interpolations). Often the 

dynamic response of incompressible turbulent flows (e.g. typical of rotating and stationary flow phenomena in 

turbomachines) is controlled by strong advective and/or diffusive mechanisms, that in practice need prohibitive 

level of discretization if an accurate solution has to be achieved. That is some kind of stabilization is mandatory, 

and the present work will be focused at the discussion of consistent weighted residual methods of achieving 

accurate and stable solutions. 
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The first instability origin is linked to the lack of diffusive term in the continuity equation so that the 

advective-diffusive Navier-Stokes system of equations is incomplete parabolic. As a matter of fact the 

incompressibility condition leads to an indetermination of the system of governing equations because the 

unknown pressures have to be computed out of the continuity equation, which plays the role of an additional 

constraint to the velocity field. From a numerical point of view, the solution to such an indetermination gives 

raise to the 'mixed method' where different functional spaces should be chosen for the velocity and pressure 

interpolation so that the satisfaction of a stability condition (known as the Babuska-Brezzi condition) is enforced. 

Although numerous convergent combinations of velocity and pressure 'elements' have been defined  (e.g 

quadratic-velocity and linear-pressure), it is fair to note that in general they are not attractive from an 

implementation standpoint particularly for three-dimensional computations. 

Besides the pressure instability in case of diffusion-dominated flows, there is a second one origin typical of 

the advection-dominated flows directly related to the numerical approximation of flow phenomena. In other 

words, the modeling of non-symmetric advective terms employing symmetric operators (such as centered finite 

differences or Galerkin basis function) leads to velocity solution corrupted by spurious oscillations 'wiggles'. The 

magnitude of oscillations is related to the convection intensity (high Reynolds or Peclet numbers) or to the 

presence of downstream boundary conditions forcing rapid change of flow behavior. The only way to eliminate 

the wiggles without changing the residual formulation requires a severe refinement of computational mesh in 

regions where strong gradients occur (e.g. boundary or shear layers), such that locally the flow is governed only 

by diffusion. As a consequence the computational load (CPU time and storage requirement) rises dramatically. 

 

The limits implicit in the classical remedial strategies for the elimination of incompressible flow numerical 

instabilities, have provided the motivations for development of an alternative to the Galerkin formulation. In 

recent years the Petrov-Galerkin weighted residual formulations have been developed as devices for the 

enhancement of stability without upsetting of consistency. The leading idea is to stabilized an original Galerkin 

formulations adding balancing terms that emanate from a perturbation of weighting functions, giving rise to 

Petrov-Galerkin formulations able to circumvent the Babuska-Brezzi condition (Tezduyar et al.,1992) (Hansbo, 

1995) (Hughes et al., 1986) or to introduce streamwise artificial diffusivity (Hughes et al., 1979) (Hughes, 

1987b). 

 

The present work is aimed at presenting the stabilization strategy implemented in the framework of the in-

house made finite element based Navier-Stokes solver XENIOS (Rispoli and Siciliani, 1994), (Corsini, 1996), 

(Borello et al., 1997b) and developed on the basis of already mentioned consistent Petrov-Galerkin approaches. 

The note that follows is first briefly introduced the readers to the integral methods with particular emphasis to 

the weighted residuals methods (Chapter 2 and 3). Then, in Chapter 4 and 5, are respectively discussed the finite 

element discretization technique and some basic information concerning the finite element spaces adopted within 

the code XENIOS. Finally in Chapter 6, the stabilized formulations for both advective and diffusive flow limits 

are presented and details concerning the Petrov-Galerkin stabilized of Navier-Stokes problem for turbulent and 

incompressible flow are also discussed. 
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2. An introduction to the integral methods 

 

Boundary value problems defined by system of PDE could be expressed in an equivalent integral form 

mainly on the basis of two approaches. 

The first is the variational methods which transform the original differential problem introducing an integral 

functional δI (called variational principle) constructed as the inner product of the PDE onto a variation of the 

unknown variable. δI then could be considered as a virtual work, and the integral form of the problem simply 

claims a minimum or stationary energy condition. Such method, one of the most powerful methods of solution 

for engineering problems, necessarily begins with finding the variational principle. 

 

PDE

variational
principle

residual
principle

equations
of

Rayleigh -Ritz

equations
of

Galerkin

discretization

inner product

 

Fig. 2.1 -  Variational methods versus weighted residual methods 

 

Generally the physical law that models the dynamic of viscous flow could not be transformed in a variational 

principle, contrary to phenomena such as Stokes or potential flow. For such a reason the finite element 

formulation of Navier-Stokes problem relies on the use of the second integral approach, that is the weighted 

residuals method in its Galerkin definition. The weighted residuals method defines a more universal approach 

with respect to the variational one, because the definition of the integral problem is obtained requiring that the 

inner product of the residuals of the PDE to a subspace of weights is equal to zero. Such orthogonality condition  

is equivalent to forcing the error of the approximate differential equation to be zero in an average sense (just a 

finite conditions of orthogonality could be imposed) (Chung, 1978). 

Let recall that the inner product between functions is equivalent to the scalar product of vectors in a Cartesian 

frame. The inner product of orthogonal sets of functions is therefore defined as: 

( )ν κ ν κ νκφ φ φ φ δΩ δ, = ∫ ⋅ =Ω  (2.1) 

where δνk is the delta of Kronecker. 

Let consider now a generic differential equation of the form: 

Lu f 0− =  in Ω ∈  Rnsd , 

subject to the following boundary conditions: 

(2.2) 

Dirichelet conditions            u  = g  on Γg 

von Neumann conditions     u,n  = h  on Γh 

(2.3.a) 

(2.3.b) 

where nsd defining the number of space dimensions and: 
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L, is the linear differential operator, 

u, is the unknown variable, 

f, is the source term. 

 

The boundary Γ of computational domain is considered as the composition of two subsets Γg and Γh, defined 

as follows: 

g hΓ Γ Γ∪ =  

g hΓ Γ∩ = ∅  

 

(2.4) 

where the symbol ∅  defines the empty set. 

 

The definition of a residual formulation involves the introduction of two classes of functions. 

The first class S is introduced to define an approximation of the solution and it is composed by the candidate 

trial or trial functions u, that must satisfy the essential set of boundary conditions (2.3.a). 

The second class W contains the variations or weighting functions w, used for constructing the residual 

orthogonal projections. This collection is very similar to the trial solutions with the exception that they have to 

satisfy the homogeneous counterpart of the Dirichelet boundary conditions (2.3.a).  

The impossibility of defining over Ω  continuous trial functions u and variations w (�), gives rise to the 

construction of finite-dimensional approximation of  S  and  W . These collection of functions are denoted by 

Sh and Wh, respectively. The superscript h refers to the association of the approximate function spaces to the 

discretization of the domain Ω, which is parameterized by a characteristic length scale. 

The introduction of approximate trial solution ~u  into the (2.2) will not satisfy exactly the governing 

differential equation, and a residual or error appears that is proportional to the finite-dimensional discretization 

of the original continuous problem: 

Lu f e~ − =  (2.5) 

The application of weighted residuals method requires, as already discussed, to construct the inner product of 

(2.5) to a set of weighting functions  ~w : 

( )e w e, ~ ~= ⋅∫ =wΩ Ωd 0  (2.6) 

 

The above condition of orthogonality permits the definition of a residual formulation consistent with the 

original differential formulation that is able to guarantee the best approximation property (Hughes and Brooks, 

1982).  

� 

The numerical analysis tool of flow phenomena taking place in turbomachinery developed with the finite 

element code XENIOS is focused on the solution of the system of equations that models the steady-state 

dynamic response of incompressible turbulent fluids. For such a reason it is meaningful to briefly recall the 
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boundary value problem expressed for the following set of fluid properties (x1-, x2- and x3- momentum 

components, pressure, turbulent kinetic energy k and viscous dissipation rate ε). Here the used first order 

turbulence closure follows a two equations approach implemented both in its isotropic (Jones and Launder, 

1972) and cubic non-linear (Craft et al., 1993) versions (Corsini, 1996) (Borello et al., 1997a). 

 

Let consider the following vector form of the Navier-Stokes boundary value problem over a domain Ω ∈  

Rnsd: 

j i j ij j iu u f, ,= +σ ,          momentum equations 

k k,u = 0 ,                             continuity equation 

and i,j,k = 1,nsd 

(2.7) 

with following set of boundary condition over Γ Γ Γ= ∪g h : 

i i gu g= → Γ  

ij i i hσ n h= → Γ  
(2.8) 

In detail, the advective-diffusive equations modeling the conservation of turbulent variables employed in a 

standard eddy-viscosity approach are: 

ρ µ
µ
σ

ρεu j j
t

k
j

j

k k P, ,
,

= +
















 + −  

ρ ε µ
µ
σ

ε ε ρ ε
εu j j

t

k
j

j

C P
k k, ,

,

= +
















 + −1

2

 

 

(2.9) 

with following set of boundary condition over Γ Γ Γ= ∪g h : 

i i hu n⋅ = →0 Γ  

∂
∂
k

h
n

= →0 Γ  

( )
ε

µ
= →

C k

kyn
g

1 2 3 2/ /

Γ  

 

(2.10) 

 

 

3. Weak residual formulation of Navier-Stokes problem 

 

To define and build an integral finite element based Navier-Stokes problem formulation a weak-global 

approach (Hughes, 1987a) is here proposed. The peculiarity of such a global approach is that the finite element 

formulation is obtained as a consequence of the discretization the weighted residual form of the problem over the 

                                                                                                                                                                                     
� In order for u to be the exact solution of (2.2) it is necessary to impose the orthogonality of the residuals to an infinite set of 

projecting direction.  
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computational domain Ω Ω Γ= ∑ ∪ee  decomposed into small elementary domain (e). In order to achieve a 

meaningful finite element residual formulation in view of the character of governing equations (2.9), that contain 

both first and second order terms, the classes of trial and weighting functions should satisfy generalized 

properties of continuity and integrability over the closed domain  Ω Ω Γ= ∪ ⊂  Rnsd. 

Such a global approach is equivalent to the local one suggested by Chung (1978), where the final form of the 

integral problem is a consequence of the composition of local weighted residual formulation applied in each 

elementary domain on the basis of functions ~u  and ~w  defined on Ωe as: 

{ }~ ~| ~w w w C� � ∈ 0  

{ }~ ~|~u u u C� � ∈ 0  

 

(3.1) 

that is a piecewise continuity condition on the discretized domain. 

 

The definition of a weak integral formulation for the problem under exam requires the introduction of two 

function spaces S  and  W and their finite dimensional approximations. S h is the approximate collection of trial 

functions defined as: 

S h { }Γ g
h1 gu~,Hu~|u~ →=∈ =  (3.2.a) 

while W h is the class of weighting functions: 

W h { }Γ g
h1 0w~,Hw~|w~ →=∈ =  (3.2.b) 

 

It is worth to note that the component functions satisfy complementary sets of boundary values. Furthermore 

to preserve the sense of the application of Green-Gauss theorem to the momentum equation, such spaces must be 

composed by functions that must be derivable and with the derivative square-integrable over the global domain 

Ω. 

Synthetically it is now possible to state the following suitable weak formulation of Navier-Stokes problem 

obtained from the general expression (2.6): 

( ) ΩΩΩ
ΩΩΩ

dd)(d insi,ijnsj,ijns fwwuuw ∫=∫−∫ σ  (3.3a) 

Integrating by parts the diffusive flux integral (with second order derivatives) and by virtue of the Green-Gauss 

theorem, the weak form reads as: 

( ) ΓΩΩσΩ
ΓΩΩΩ

dddd hinsiji,nsj,ijns ihwfwwuuw ∫+∫=∫+∫

c i iw d
Ω

Ω∫ =,u 0  

i i gu g= → Γ  

 

(3.3b) 

where w ns indicates the class of weights applied to the momentum equations (together with the two advective-

diffusive conservation equations of the turbulent variables), and wc the weights applied to the scalar continuity 

equation. Finally, wh indicates the restriction of weighting functions on the boundary of computational domain. 
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The first thing to give attention is that the boundary condition ij i i hσ n h= → Γ   is not explicitly mentioned 

in the weak statement (3.3), but it is implied in the variational formulation that is only fulfilled in an approximate 

sense due to the weighted residual approach. Boundary conditions of this type are referred as natural or 

Neumann conditions. Otherwise the Dirichlet or essential boundary conditions are exactly satisfied by the 

approximate solution function (3.2.a). 

It is also important to highlight that the integral properties imposed to the classes S h and W h give sense to 

the integral term ns i ij d,w
Ω

Ω∫ σ , where explicitly appears the deviatoric stress tensor. 

By virtue of the common integration domain and of the incompressibily condition, the system of integral 

equations (3.3) could be also transformed as: 

( ) 0dwdddd i,icihinsiji,nsj,ijns =∫+∫−∫−∫+∫ ΩΓΩΩσΩ
ΩΓΩΩΩ

uhwfwwuuw  (3.4) 

where the continuity condition is added to the momentum equation as an additional constraint imposing to the 

velocity field a zero divergence, and its weighting function wc plays the role of a Lagrangian multiplier in the 

bounded problem (3.4). 

 

As already mentioned in the introductory Chapter, the pair of functions used to interpolate and weight 

velocity and pressure must in principle satisfy the Babuska-Brezzi stability condition. The mixed finite element 

formulation implemented in XENIOS adopts a quadratic variation for w ns and linear variation for wc. 

 

 

4. Finite element method and discretization  

 

First step toward the finite element form of the weak formulation (3.4) is the definition of the functions that 

compose the space of solutions  S  and weights W , using an approximate representation of the continuum 

domain Ω on the basis of the information located in a suitable number of points (called nodes) within each 

elements. 

In the finite element methodology implemented in XENIOS, the generic trial function s  ∈ S  h is build on 

Ω Ω Γ= ∪ with the following structure: 

s v g= +  (4.1) 

where g  defines the whole set of essential boundary conditions and v is a function defined on Ω Ω Γ= ∪ . 

Imposing the Dirichlet conditions to (4.1) follows: 

gvs
g/ += ΓΩ Ω   →  0v

g
=Γ  

 

(5.2) 

thus it is possible to conclude that the approximate basis function v, as the fundamental component of Sh 

definition, satisfy the conditions stated for the weight space of existence W h (3.2.b). 

As a consequence of the property (5.2) follows the possibility of choosing identical basis function in order to 

approximate the solution and to weight its residual, and the integral method based on such a choice of function 
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collection is named the Galerkin method. Such fundamental component function is called basis or shape 

function. 

 

Let consider again the closed computational domain Ω Ω Γ= ∪  ∈  Rnsd , and a set of nodal points l ⊂  Ω . 

In the Galerkin residual method the structure adopted for the basis function rests on a discrete representation 

of domain that uses a finite number l of nodal points (that is a finite number of information) to build the ensuing 

polynomial structures: 

φl

nodes

1l
lcw ∑=

=
  →  weighting functions 

(4.3) 

φl

nodes

1l
ldu ∑=

=
→  trial functions 

(4.4) 

where: 

cl, are the nodal values of weights, 

dl, are the nodal values of unknown variables, 

φl, the basis functions defined in each nodes to interpolate the behavior of solution and of variation on the 

computational domain. 

 

Each function belonging to the collections S h and W h could be thus approximately defined as a linear 

polynomial with constant nodal coefficients and interpolating shape functions  φl,  that fulfill the following 

properties, for each node l⊂  Ω : 

l lφ = 1   →  l mφ = 0    ∀  m ⊂  [ Ω ] ≠ l (4.5) 

 

Fig.s 4.1 and 4.2 show, in the case of a linear approximation (linear shape function) over a 1-D closed 

domain  Ω =[1,0], the form of each nodal interpolating functions and the effect of their linear combination to 

define on the whole domain the resulting interpolated solution or variation. 

 

φ1 φA φn+1

 

Fig. 4.1 – Nodal linear shape functions 
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Fig. 4.2 – Resulting interpolated function 

 

It is worth to note that introducing the definition of trial (4.4) and weighting (4.3) functions within the weak 

residual formulation (2.6) or (3.4), the set of nodal values of the variations cl could be simplified as common 

constant factors on the inner product. As a consequence of such position in the discretized residual Galerkin 

formulation, the construction of inner product between the residuals of system of equations and the set of 

weights is simply obtained with reference to the nodal shape functions. That is with reference to the elementary 

portion of the continuum domain located by the set of nodes. 

Let now consider the effect of the application of the domain subdivision into elements, shown in Fig. 4.3 and 

just discussed, to the weak formulation of Navier - Stokes problem (3.4). 

 

nodes

 

Fig. 4.3 – Computational domain finite element discretization 

 

The domain Ω is shared into a finite number NUMEL of elementary sub-domains Ωe, with e = 1,2 . . ., 

NUMEL. Γe is the boundary of the element Ωe and the discretization fulfills the ensuing properties: 

∪ =e eΩ Ω  (4.6) 

∩ = ∅e eΩ  (4.7) 

 

Finally an interior boundary could be defined as: 

Γ Γ Γint = ∪ −e e  (4.8) 
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Furthermore, let assume the continuity of weights and solution functions in each element Ωe,: 

{ }~ ~| ~w w w C� � ∈ 0  

{ }~ ~|~u u u C� � ∈ 0  

(4.9) 

whereas their first order derivatives could be discontinuous across the inter-element boundary. 

 

 

The discretized formulation, with a simplified notation, reads as: 

( )
e

ns j i j
e

ns i ij
e

ns ij i
e

c i i

e
ns i h i

i g

e e e

e h

d d d w d

d d

g

Σ Σ Σ Σ

Σ

w u u w w n u

w f w h

ui

Ω
Ω

Ω
Ω

Γ
Γ

Ω
Ω

Ω
Ω

Γ
Γ

Γ

∫ + ∫ − ∫ + ∫ =

∫ + ∫

= →

ρ , , ,
int

[ ]σ σ
 

(4.10) 

where: Ωe is the elementary integration domain, 

 Γint is the composition of inter-element boundaries that fall in the interior of Ω, 

 [ ]ij jσ σ σn n n= +ij j
+

ij j
-+ − , is the balance of diffusive fluxes across inter-element boundaries, their 

introduction in the discretized form of the diffusive integral is a consequence of the element-wise 

continuity characteristic of the used shape functions (4.9).  

 

Let consider, now, the elementary domain Ω = Ω Γe e e∪  generically located within the domain Ω. The 

use of approximate trial and weighting functions, with an elementary domain of definition (4.9), allows the 

formulation of local elementwise residual formulation of Navier-Stokes problem as: 

( )ns j i j ns ij j ns i c i i
e e e e

d d d w dw u u w w f u
Ω Ω Ω Ω

Ω Ω Ω Ω∫ − ∫ − ∫ + ∫ =ρ , , ,σ 0  (4.11) 

 

The presence of Cauchy tensor divergence  σij , including pressure and diffusive terms, leads to the 

application of an integration by parts and of the Green-Gauss theorem in order to lower the second order 

differential term and according to the local continuity properties of used basis functions. 

The residual due to the stresses distribution within each element is then computed as the sum of volume 

contribution directly linked to the stress tensor itself and a contribution depending from the fluxes of normal and 

tangential stresses on the element boundary Γe: 

ns ij i ns i ij ns ij j
e e e

d d dw w w
Ω Ω Γ

Ω Ω Γ∫ = − ∫ + ∫, ,σ σ σ n  (4.12) 

 

Substituting (4.12) in (4.10) the elementary residual formulation reads as: 

( )ns j i j ns i ij ns ij i ns i

c i i

e e e e

e

d d d d

w d

w u u w w n w f

u

Ω Ω Γ Ω

Ω

Ω Ω Γ Ω

Ω

∫ + ∫ − ∫ − ∫ +

+ ∫ =

ρ , ,

,

σ σ

0
 

(4.13) 
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The composition of (4.13) written for each element leads to the following global formulation: 

( )
e

ns j i j
e

ns i ij
e

ns ij i
e

c i i

e
ns i h ij i

e e e

e h

d d d w d

d d

Σ Σ Σ Σ

Σ

w u u w w n u

w f w n

Ω Ω Γ Ω

Ω Γ

Ω Ω Γ Ω

Ω Γ

∫ + ∫ − ∫ + ∫ =

∫ + ∫

ρ , , ,
int

[ ]σ σ

σ
 

(4.14) 

where the collection of elementary fluxes across the inter-element boundaries gives rise to the following 

integrals: 

[ ]Σ Γ Σ Γ Γ
Γ Γ Γ

e ns ij i e ns ij i h ij i
e h

d d dw n w n w nσ σ σ∫ = ∫ + ∫
int  

(4.15) 

In (4.15) is interesting to distinguish a first inter-element balance term (consequence of the element-wise 

continuity of basis function) and a second flux integral across the global boundary portion Γh were the natural 

conditions are applied. It is worth to note that approaching the inter-elementary boundaries the first order 

derivatives of the adopted trial and weighting functions give rise to equal absolute values with opposite sign. 

Such conditions show the perfect balance of diffusive inter-elementary integrals: 

n n
+ −=σ σ   →  [ ]ij jσ n = 0  (4.16) 

 

As a consequence the discretized residual formulation of Navier-Stokes problem (4.14) could be written as: 

( )
e

ns j i j
e

ns i ij
e

c i i
e

ns i h i
e e e e h

d d w d d dΣ Σ Σ Σw u u w u w f w h
Ω Ω Ω Ω Γ

Ω Ω Ω Ω Γ∫ + ∫ + ∫ = ∫ + ∫ρ , , ,σ  
(4.17) 

 

As a matter of fact the substitution of natural boundary conditions (σij = hi on Γh) in (4.14), has permitted to 

demonstrate the equivalence between the Navier-Stokes residual formulations under exam: 

• weak formulation, defined on the global computational domain as a sort of energetic condition to find the 

solution; 

• residual formulation, defined on an element basis as a local orthogonality condition between the residuals 

and the variations 

 

� 

It is thus possible to conclude that the modeling of flow behavior using an approximate finite element method 

usually requires the ensuing steps: 

• the approximate representation of continuous computational domain Ω, as the composition of small sub-

domains called ‘elements’ Ωe; 

• the definition of approximate solution, obtained by the interpolation of the unknown values in a finite number 

of nodal points defined in each element using a collection of basis functions; 

• the definition of an integral equation for each unknown variable, by use of a residual principle. 
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5. Finite element interpolation functions 

 
One of the crucial aspect in the application of finite element methods to CFD concerns with the choice of 

shape or basis functions, that is the interpolating functions used to approximate the solutions and their variations 

on the discretized computational domain. The structure of such functions and their order determine the accuracy 

of FEM. 

The shape functions could be given by both polynomials (with several orders) and product of polynomials to 

trigonometric or exponential functions. For instance the adoption of polynomial expressions allows a linear 

approximation of a variable in a quadrangular two-dimensional element by use of its values at the four corner 

nodes. Again in a quadrangular two-dimensional element a polynomial could simulate a quadratic law just 

adding five nodes, (four nodes in the middle of each element edge and the last in the element center). Similarly 

work polynomial expressions more complex as the Lagrange ones, allowing different order of approximation in 

each Cartesian directions. As a consequence of the increasing complexity, shape functions with growing order 

permits a better approximation of unknowns behavior and thus leading to the use of a reduced number of 

elements and nodal points (that is the number of problem DOFs), preserving the accuracy of the FEM. On the 

other hand the use of higher-order polynomials for the collection of finite element shape functions leads to 

increased coding difficulties. 

Such considerations state clearly that the choice of finite element and of the associated function spaces must 

be the consequence of a compromise between the accuracy of the FEM and its computational cost (in terms of 

coding complexity, CPU time and storage requirements).  

As far as the geometric shape of the elements is concerned, often the discretized modeling of complex 

geometries introduces distortion of the sub-domains (particularly with quadrangular like shape), in order to 

simulate close the domain boundaries. From a computational viewpoint, it is thus mandatory to introduce a 

mapping operation able to simply correlate the spatial description of each element (Cartesian, spherical, etc. 

nodes coordinates) with a normal or logic system of coordinates. With the great advantage that in a normalized 

geometry representation, indicated as (ξ, η, ζ), the corner nodes coordinates have always unit value (negative or 

positive). Fig. 5.1 shows a two-dimensional logic element, while the following Fig. 5.2 describe the 

correspondence Cartesian and logic coordinate systems through a mapping operator for two-dimensional 

geometries. 

 

Fig. 5.1 -  Two-dimensional element in logic reference 
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Fig. 5.2 – Link between Cartesian  (x-y) and logic (ξ−η) frame of references 

 

The mapping operator is generally established through an analytical correspondence between the global and 

the local normalized systems of coordinates (Fig. 5.2) with the following general functional relationship: 

x

y

z












=












f

ξ
η
ς

 

 

(5.1) 

Where the function f defines analytically the coordinates transformation operator and it introduces a bi-

univocal correspondence between the elements of the discretized domain and the rectangular normalized 

elements. 

The simplicity of the logic representation of elementary domain together with their universal applicability to 

element of generic shape, suggest in a FE based CFD code the use of the logical frame of reference as the basis 

for the definition of the approximate integral formulation (e.g. local shape function to build both trial and 

weighting functions collections). Element by element, the real Cartesian geometry would be then constructed 

using appropriate transformation operator. In detail the link between the introduced system of coordinates could 

be expressed as follows: 

x N x
i

nel

i i( , , ) ( , , )ξ η ς ξ η ς= ∑
=1

 (5.2) 

y N y
i

nel

i i( , , ) ( , , )ξ η ς ξ η ς= ∑
=1

 (5.3) 

z N z
i

nel

i i( , , ) ( , , )ξ η ς ξ η ς= ∑
=1

 (5.4) 

where nel is the number of element nodes, Ni are the appropriate interpolating functions, (xi,yi,zi) are the nodal 

coordinates le coordinate in the global frame of reference. 

 
For instance, with reference to a two-dimensional element with four nodes (Fig. 5.1) the related linear shape 

functions Ni  could be defined as: 



A FE Method for the Computational Fluid Dynamics of Turbomachinery 

 17 

x =α0 + α1ξ + α2η + α3ξη  (5.5) 

y = β0 + β1ξ +β2η +β3ξη  (5.6) 

with the polynomial coefficients α and β that could be obtained applying the (5.5) and (5.6) at each corner nodes 

where the global-to-login coordinate transformation is known. Such a position leads to the following relations: 

x N x x
i

N

i i( , ) ( , )ξ η ξ ηα α α α α= ∑ =
=1

 (5.7) 

y N y y
i

N

i i( , ) ( , )ξ η ξ ηα α α α α= ∑ =
=1

 (5.8) 

Writing the above relations for each element node a system of equations for the unknown polynomial 

coefficients α and β (in three-dimensions α, β and γ) is finally obtained. 

 

The shape functions could be defined using an alternative procedure called direct formulation, that is based 

on the construction of the collection of interpolating basis according to the set of general properties they have to 

fulfil: 

• the function related to the generic element node i mist be such that Ni (i)= 1 and Ni (j)= 0 for j≠ i; 

• the behavior of the function along the element boundaries must guarantee the continuity with neighbouring 

elements.  

 

Just to give an example again with reference to the element shown in Fig. 5.1, the shape function for the 

upper-right node (normalized coordinates (1,1)) could be defined as the product (ξ + 1)(η + 1) /4. As a matter of 

fact it assumes the unit value at the position (1,1) and zero values at the other nodal positions where at least one 

of the normalized coordinates is set equal to -1. Furthermore the defined function shows a linear variation on the 

element edges and by that way guarantees the continuity with the neighbouring domains. 

 

The isoparametric elements are commonly adopted in the developed FE codes. The name 'isoparametric'  

derives from the fact that the same parametric function which describes the geometry may be used for 

interpolating spatial variations of a variable (u, v, T, p,....) within an element. In general: 

x N x
i

nel

i i( , , ) ( , , )ξ η ς ξ η ς= ∑
=1

 (5.9) 

u u
i

nel

i i( , , ) ( , , )ξ η ς ξ η ς= ∑
=1

Φ  (5.10) 

and for an isoparametric element Φi ( ξ, η, ζ) = Ni ( ξ, η, ζ). 

 

The last problem to be solved in the construction of FE based CFD code, is the definition of shape function 

derivatives in the global system of coordinates (x, y, z) necessary to the definition of element coefficient 

matrices. Such matrices contain the global unknowns and variations derivatives, that are of difficult direct 

computation while they offer a simple definition in the logic frame of reference. It is thus mandatory to find a 

logic-to-global transformation tool for the derivatives. 

Let compute the shape function first derivatives with reference to the normalized coordinates ξ, η, and ζ it is 

possible to write: 
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∂Φ
∂ξ

∂Φ
∂

∂
∂ξ

∂
∂

∂
∂ ξ

∂
∂

∂
∂ ξ

= + +
x

x

y

y

z

zΦ Φ
 (5.11) 

∂Φ
∂η

∂Φ
∂

∂
∂η

∂
∂

∂
∂ η

∂
∂

∂
∂ η

= + +
x

x

y

y

z

zΦ Φ
 (5.12) 

∂Φ
∂ζ

∂Φ
∂

∂
∂ζ

∂
∂

∂
∂ ζ

∂
∂

∂
∂ ζ

= + +
x

x

y

y

z

zΦ Φ
 (5.13) 

or in a matrix form: 

∂
∂ ξ
∂Φ
∂ η
∂
∂ ς

Φ

Φ
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∂
∂

Φ

Φ

x

y
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
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
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


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
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


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

 

 

 

(5.14) 

where J is called the Jacobian and defined the searched transformation operator. 

As a matter of fact the global derivatives could be defined after the computation of the inverse Jacobian J-1, 

as: 

∂
∂
∂Φ
∂
∂
∂

Φ

Φ

x

y

z





























=J-1  

∂
∂ ξ
∂Φ
∂ η
∂
∂ ς

Φ

Φ





























 

 

 

(5.15) 

 

From an algorithmic point of view, the demonstrated simplicity of treating the interpolating functions and 

their derivatives in the logic reference leads to the computation of the integral terms that define the coefficient 

matrix (on an element level) in a normalized control domain. Such a technique requires of course a coordinate 

transformation able to transfer the differential area or volume from the global to the logic reference. Of course 

the same transformation must involve the extremes of integration. Thus defined K as a generic term of the 

element matrix the transformation of integral could be written as: 

[ ]
V

KdV K J d d d∫ = ∫ ∫ ∫
− − −1

1

1

1

1

1
det ξ η ς  

 

(5.16) 

 

5.1 Interpolation spaces in XENIOS 

 

A sample of the shape function implemented in the CFD code XENIOS is here given. The shape function are 

defined with their first order derivatives for two-dimensional element with both bi-linear or bi-quadratic 

approximation. Such functions have been defined by use of the direct formulation already discussed. 

 

The four nodes quadrangular element is shown in Fig. 5.3, together with the node numbering. 
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Fig. 5.3 - Quadrangular linear element, local node numbering 

 

The related bi-linear shape functions are: 
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(5.17) 

The  first order derivatives of the bi-linear shape functions (5.17) are: 
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(5.18.a) 
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(5.18.b) 

 

The bi-quadratic nine nodes element has the local numbering shown in Fig. 5.4. 

 

1 2 

4 3 
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Fig. 5.4 - Quadrangular linear element, local node numbering 

 

The related bi-quadratic shape functions are: 
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(5.19) 

with the following first order derivatives: 

2 
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(5.20.a) 
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6. Stabilized finite element formulation for advective-diffusive flows 

 

The stabilization methods, that will be discussed in the following Chapters, define numerical tools able to 

correct the instability origins that affect originally the finite element Galerkin formulation of incompressible 

Navier-Stokes problem. Their presentation is here carried out with reference to two different extreme flow 

conditions: 

• the purely advective flow limit, characterized by the localization of advective transport of variable along the 

streamlines; 

• the purely diffusive flow limit (Stokes flow), characterized by pressure instability related to the 

incompressibility constraint. 

 

6.1 The stabilization of convection dominated flow 

The solution of fluid dynamic problems using symmetric Galerkin residual formulation loses the best 

approximation properties showed in structural and thermal problems (Hughes et al., 1982). As a consequence of 

the convective transport of fluid variables through the computaional domain the coefficient matrix associated 

with the governing equations contains first order non symmetric terms. 

The difficulties that arise in simulating velocity fields, strongly asymmetric, using symmetric operators such 

that the elementary Galerkin shape functions (or equivalently centred finite differences stencil) give rise to the 

presence of spurious oscillations of velocity on contiguous node (called 'wiggles'). 

A simple way to comprehend such a numerical behavior could be searched on the basis of the demonstrated 

equivalence between linear Galerkin finite element approximation and the centered finite difference (Hughes et 

al, 1982) (Leonard, 1979). 

 

The modeling with centered finite difference (that is symmetric operators) of first order derivatives does not 

lead to an intrinsic stability. 

Let consider, for instance, a convective one-dimensional problem where the velocity u transport a scalar ϕ 

through the domain  Ω ⊂  R1: 

u ⋅ ∂ϕ
∂x

 
(6.1) 

The stability condition generally requires that each wrong variations of the value of the transported scalar ϕ 

should results in a variations of the convective governing term able to correc and compensate such error. That is 

the stability condition could be expressed as: 

( )
0

term.convective
<

∂ϕ
∂

 
(6.2) 

 

Let now consider the form that (6.1) assumes if a centered finite difference approximation is used. Indicating 

with the sub-scripts (i-1) and (i+1) the grid points located respectively upwind and downwind from the point (i) 

where the term has to be computed, it is possible to write: 
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u u⋅ ≈
−+ −∂ϕ

∂
ϕ ϕ

x x
i i1 1

2∆
 

(6.3) 

that clearly shows that the sensitivity of convective term to the variations of scalar ϕι is zero. 

Thus, it could be concluded that the modeling of convective term, appearing in the momentum equations as 

well as in the conservation equations of turbulent variables, carried out with operators spatially symmetric 

introduce in the algorithm a neutral stability. That is the modeled convective term is unable to feel the direction 

of propagation along the grid of the convective signals. 

 

The first idea developed for recovering the algorithm stability proceeds modeling the convective term by use 

of upwind finite differences scheme, so that the spatial derivatives of the variable in each nodal position (i) 

explictly depends from the value assumed at the node itself (i) and at the node with an upwind location. In such a 

way that a directional stability is recovered at expense of accuracy of the formulation.  

 

Let now demonstrate that an equivalent stabilization could be carried out by the composition of a convective 

term modeled with centered finite difference stencil and an artificial diffusive like term. With reference to a one-

dimensional problem it could be written: 

 

u u u
u⋅ ≈

−
=

−
+

− + −− + − + −∂ϕ
∂

ϕ ϕ ϕ ϕ ϕ ϕ ϕ
x x x

x

x
i i i i i i i1 1 1 1 1

22 2

2

∆ ∆
∆

∆
 

where 

~
k

x= u∆
2

 

(6.4) 

defines a numerical diffusivity that directly depends on the magnitude of convective phenomena relative to the 

characteristic grid dimension (∆x). 

 

The interpretation of the upwind differencing technique using the artificial diffusivity approach, represents 

the link that originally gives rise to the possibility of implementation of such stabilization methods in the 

framework of a residual finite element formulations. It is therefore with the goal of correcting the typical under-

diffusivity of Galerkin scheme that the stabilization technique described in the following Chapter have been 

developed. 

 

Non-consistent stabilization methods, Upwind and Streamline Upwind 

The stabilization of Galerkin finite element formulation is based on the introduction of an artificial balancing 

integral able of correcting the negative diffusivity of the residual method. An appropriate choice of the artificial 

contribution intensity could lead, in a one-dimensional case, to the simulation of exact numerical solution. Such 

upwind schemes are called optimal (Brooks and Hughes, 1982). 

 

The artificial diffusivity is in the optimal upwind scalar scheme defined using the following expressions: 
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ζ


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
=

2

hu
k
~

 

ααζ 1)coth( −=  

α =
u h

k2
 

 

 

(6.5) 

where, for a meaningful extension to multi-dimensional case: 

 u , is the absolute value of the local velocity; 

h, is the characteristic element dimension; 

α, is the elementary or grid Peclet number; 

k, is the physical fluid diffusivity; 

ζ, is a stabilization coefficient able to modify the intensity of artificial diffusivity with reference to the 

magnitude of convective transport phenomena. 

 

The application of upwind scalar schemes to multi-dimensional flow conditions leads often to non controlled 

over-diffused solution in particular showing non physical cross wind diffusion, because of the isotropic character 

of the balancing operator. 

 

In order to eliminate the drawbacks shown by the scalar schemes has been then developed the streamline 

upwind technique where the upwind effect is concentrated in principle along the streamline direction. In such a 

method the balancing operator, again with the form of a diffusive term, acts exclusively in the streamline 

direction as an anisotropic artificial diffusivity. The artificial diffusivity assumes therefore a tensorial character 

and could be expressed as follows: 

~ ~
k kij i j= ⋅u u  (6.6) 

where: 

u u uj j= , defines the velocity components unit vector, 

u u u2 = i i , is the velocity norm, 

~
k , is the artificial diffusivity already defined with reference to the scalar upwinding techniques. 

 

 

It is now interesting the analysis of the form of the tensorial balancing term. Let concentrate the analysis to 

steady and incompressible Navier-Stokes equations. 

Consider the divergence of stress tensor appearing in the molecular diffusive term, its symmetric part could 

be written as: 

 

( ( )), ( ( )), ( ( )),2 2 2k k kij j ij j ij ju u u ui, j j,i i, j j,i+ = +  
(6.7) 

 

By simply reverse the derivation order of the second term and imposing the incompressibility condition, 

divergence free velocity field, the (6.7) could be modified as follow: 
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2 2 2 2

2 2 2

( ( )), ( ( )), ( ( )), ( ( )),

( ( )), ( ( )), ( ( )),

k k k k

k k k

ij j ij j ij j ij i

ij j ij j ij j

u u u u

u u u
i, j j,i i, j j, j

i, j j,i i, j
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+ =
 

with 

uj,j = 0 

(6.8) 

 

On the basis of the development, the diffusive integral term in the Galerkin residual formulation of Navier 

Stokes problem (4.14), (4.17) could now be written as: 

( )ns i ij ns i ij ij i jd k k d, , ,
~

w w
Ω Ω

Ω Ω∫ = +∫σ u   

where explicitly appears a diffusivity obtained as the sum of physical and artificial contribution: 

ns i ij ij ns i ij i jk d k d, , ,
~

w w
Ω Ω

Ω Ω∫ + ∫σ u  (6.9) 

 

Introducing in (6.9) the artificial tensorial diffusivity expression the stabilization integral becomes: 

ns i i j i jk d, ,
~

w
Ω

Ω∫ u u u  

and substituting the unit vector ju  with its definition 

u u uj j=  

it is possible to write: 

ns i
i

j i jk d, ,
~

w
Ω

Ω∫
u
u

u u  

(6.10) 

 

 

 

(6.11) 

What clearly appears from the (6.11) is that the tensorial stabilization term has the form of the convective 

integral that must be controlled. 

 

The analysis carried out has demonstrated the equivalence between the two different approach developed to 

obtain a streamline upwind stabilization in the ambit of a finite element residual formulation: from one hand the 

classical approach that proceeds adding a diffusive balancing integral, from the other hand the intervention on 

the convective integral in such a way that the original Galerkin weight is modified by a perturbation depending 

from the stabilization parameters. 
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Residual stabilized formulation Streamline Upwind - Petrov Galerkin (SU/PG) 

The consistency of the stabilization methods could be recovered extending the weights perturbation, limited 

to the convective integral in the streamline upwind scheme, to each term that is contained in the residual Navier-

Stokes problem formulation (4.17). In such a way the build residual structure assumes the character of a Petrov-

Galerkin formulation, due to the introduction of different function spaces used for the approximation of the 

solution and  of the variations. Such a residual stabilized finite element formulation for convection dominated 

flows is called streamline upwind - Petrov Galerkin (SU/PG) (Brooks and Hughes, 1982). 

The established consistency of integral governing equations move definitively the streamline upwind - Petrov 

Galerkin from the classical upwind methods closely linked to the finite difference scalar upwind concept. In such 

a way that the SUPG formulation is not subject to the artificial diffusion criticism associated to the early 

stabilization technique. 

Let consider a flow region Ω ∈ Rnsd (nsd is the number of space dimension), which has a boundary Γ defined 

by piecewise continuous functions. Consider also a point xi ( i = 1, . . ., nsd) belonging Ω , and define ni as the 

component along i direction of the unit vector normal to Γ (positive orientation toward the inner of the domain). 

The domain boundary Γ is shared in two subset Γg and Γh, that satisfy the following relation: 

Γ Γ Γg h∪ =  (6.12) 

Γ Γg h∩ = ∅  (6.13) 

 

As already mentioned, the finite element method proceeds by subdividing the domain Ω into a finite number 

of elements numel Ωe, dove e = 1,2 . . ., numel. Let now define Γe as the boundary fo the element Ωe, the 

discretization follows the ensuing properties: 

∪ =e eΩ Ω  (6.14) 

∩ = ∅e eΩ  (6.15) 

with an interior boundary such as: 

Γ Γ Γint = ∪ −e e  (6.16) 

 

Recall also the PDE that governs a steady and incompressible Navier-Stokes boundary problem: 

j i j ij j iρu u f, ,= +σ  (6.17) 

with the following set of constraints: 

i i,u = 0 , the incompressibility constraint;                (6.18) 

i i gu g= → Γ , essential Dirichelet boundary conditions; 

ij i i hσ n h= → Γ , natural Neumann boundary conditions.  

 

 

The classical Galerkin residual method adopts identical collections of trial and weighting functions, so that 

the weights are then continuous across the inter-element boundaries. As a matter of fact such property is lost 
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when a Petrov-Galerkin (SUPG) formulation is used due to the perturbation of the set of weights that modify the 

original Galerkin functions on an element basis as follows: 

w w pns ns ns' = +  (6.19) 

where wns is the Galerkin weight applied to the momentum equations and pns is the stabilizing streamline upwind 

like contribution. The application of such a perturbation on contiguous elements introduces the discontinuity  of 

weighting functions already mentioned. However the perturbation function still fulfills the integrability property 

on an element scale. 

 

Let consider a point x  belonging to the interior boundary Γint and, arbitrarily, establish a positive orientation 

for the normal direction across the boundary. Define also n+ and n- as the unit vector normal to Γint in the 

considered nodal position x, it could be written that: 

n- = - n+ 

Introducing for simplicity a term that accounts for the sum of convective and diffusive fluxes: 

χ χ χ ρi i
a

i
d

j ij= + = −u ui, j σ  
(6.20) 

Is possible to show that the jump of χi at the considered nodal point boundary x across the neighboring elements, 

defined as: 

[ ] ( )χ χ χ χ χn i i i i i i in n n= − = ++ − + + + − − 
(6.21) 

is an invariant with respect to the adopted sign convention for Γint. 

 

On the basis of such an introduction, the application of perturbed weighting function on the basis of the 

SUPG method to the Navier-Stokes problem leads to the following residual stabilized formulation: 

( ) ( )
e

ns j i j ns i ij ns i
e

ns j i j ns ij j ns i

e
ns ij i h i

e e

h

d d

d d

Σ Σ

Σ

[ ] [ ]

[ ]

, , , ,

int

w u u w w f p u u p p f

w n w h
Ω

Ω
Ω

Ω

Γ
Γ

Γ
Γ

∫ + − + ∫ − −

− ∫ − ∫ =

ρ ρσ σ

σ 0
 

 

(6.22) 

or in an equivalent way: 

( )
e

ns j i j ij j i
e

ns ij i h ij i i
e h

d d dΣ Σ′∫ − − − ∫ − ∫ − =w u u f w n w n h[ ] [ ] ( ), ,
intΩ

Ω
Γ

Γ
Γ

Γρ σ σ σ 0  (6.23) 

 

It is worth to note that from the obtained residual form of the integral problem is again possible to extract the 

original differential expression of the Navier-Stokes boundary problem. Imposing the annihilation of the whole 

integrand functions, the Euler-Lagrange conditions of the residual formulation could be extracted giving the 

following system of equations: 

ρ j i j ij j i

ij i i h

ij i

u u f

n h

n

, ,

int

( )

[ ]

+ − =
− = ⋅ → ⋅

= ⋅ → ⋅

σ
σ
σ

0

0

0

Γ
Γ

 

 

(6.24) 

 

The differential formulation obtained (6.24) is simply modified with respect to the original PDE form by a 

continuity condition of diffusive fluxes across the inter-element boundary. 
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The consistency of the SU/PG stabilization method remains thus demonstrated. 

 

The fundamental aspect that characterized the obtained  stabilized finite element formulation in comparison 

to the classical upwind schemes is that the streamline upwind perturbation function pns plays is role limited to the 

element interior where the perturbation itself is continuous. The function pns does not alter the continuity 

condition of diffusive flux across the element boundaries as well as the natural boundary condition h, while it 

acts implicitly on the effect of the Dirichelet essential conditions through the convective term (Brooks and 

Hughes, 1982). 

It is furthermore interesting to note that, in case of adoption of linear shape functions and the domain 

discretization leads to rectangular elements the divergence of the diffusive fluxes is equal to zero: 

σ ij, j = 0  

that is the function pns does not play any stabilization effect on the diffusive integral. 

 

The expression of streamline upwind perturbation pns of weights is then defined starting from the 

modification of convective weight obtained discussing the non consistent streamline upwind method (6.11). The 

shown equivalence between the modification of the convective weight and the introduction of a tensorial 

diffusive balancing integral permits to write the following: 

p wns ns=
~

, /k j ju u  (6.25) 

 

Fig. 6.1 shows the effect of the perturbation of a linear Galerkin function. 

 

 
 

Fig. 6.1.  Comparison between linear Galerkin and Petrov-Galerkin weights 

 

The coefficient 
~
k  again is an artificial diffusivity that could be defined in several ways. Still remains valid, 

as verified by numerical computations, that its absolute value as little importance if compared to the structure of 

the perturbation function pns  defined in (6.25). However, is here reported the expression for 
~
k  implemented in 

XENIOS for multi-dimensional computations: 

~
k

u h u h u h
=

+ +



ξ η ςξ ξ η η ς ς

2
 

(6.26) 

with: 
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ξ α αξ ξ= −coth( ) 1  

η α αη η= −coth( ) 1  

ς α ας ς= −coth( ) 1  

and: 

α ξ
ξ ξ

=
u h

k2
 

α η
η η

=
u h

k2
 

α
ς

ς
ς=

u h

k2
 

and: 

uξ = eξ ⋅ u, uη = eη ⋅ u, uζ = eζ ⋅ u. 

 

In detail eξ, eη and eζ  are the unit vectors of logic elementary directions  ξ , η  and ζ while hξ hη hζ are 

appropriate characteristic elementary length scales. Clearly if the weight wns is continuous across the element 

boundaries, the perturbation pns and as a consequence the modified weight wns' will be discontinuous. 

 

The Streamline Upwind - Petrov Galerkin formulation implemented in XENIOS 

 

The implementation of a SUPG stabilized formulation in the finite element code XENIOS has required two 

fundamental changes with respect to the formulation originally proposed by Brooks and Hughes (1982). 

The use in XENIOS of mixed stable elements, with a quadratic interpolation for the velocity and turbulent 

quantities and a linear one for the pressure, gives rise to an original interpretation of the consistent stabilization 

scheme. 

 

As a matter of fact the use of second order basis function leads to the presence in the advective-diffusive 

equations of the flow model of stabilizing integral with non-zero second order derivatives. Such as: 

p wns nse eΩ ΩΩ Ω∫ = ∫σ σij j j j ij jd
k

d, ,

~
,

u
u

 
(6.27) 

 

With a direct reference to the Navier Stokes formulation, two terms of the stabilized integral formulation 

have been changed: 

p p pns ns nse e eΩ Ω ΩΩ Ω Ω∫ = −∫ + ∫ +σ ij j j ij i j j i jd p d k d, , , , ,( ( ))2 u u
 

(6.28) 
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The first change involve the integral term of the momentum equation proportional to the pressure gradient. 

The structure of the SUPG stabilizing integral in an elementary domain is: 

~
,k p d

j
j

u

u
wns, jeΩ Ω∫

 

(6.29) 

The stabilizing effect is therefore a consequence of the product in each element of the spatial gradient of 

quadratic and linear functions.  Let consider, for instance, the behavior of spatial first order derivatives of the 

functions wns (parabolic) and p (linear) evaluated for the central node of a one-dimensional quadratic element 

Fig. 6.2. 

A

 p,j

wns,j

 

Fig. 6.2. First order derivatives of quadratic and linear shape functions 

 

From the comparison, here limited to one dimension, becomes evident that the stabilizing contribution due to 

the mixed spaces of interpolation assumes an elementary value that is always positive both downwind and 

upwind of the node A. Such a circumstance is that the term loses its ability of introducing a streamline upwind 

perturbation. Its presence seems to introduce exclusively an artificial disturb that in the developed formulation is 

eliminated. 

 

The second change has involved the diffusive term which implicitly influences the set of natural boundary 

conditions and their fulfillment. 

The local elementary continuity of the introduced perturbation functions permits the application of the Green-

Gauss rule on an element scale, such that a boundary integral origins that corresponds to an artificial diffusive 

flux of the form: 

p p pns ns nse e eΩ Ω ΓΩ Ω Ω∫ = −∫ + ∫σ σ σij j j ij ij jd d d, , n
 (6.30) 

 

Such a term is perfectly balanced along the inter-element boundaries in the interior of the computational 

domain, as a matter of fact each elementary artificial flux is annihilated by fluxes equal and opposite from the 

neighboring elements. On the contrary it should be set equal to zero on the physical boundary of the domain 

where it defines unphysical flux conditions. 
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The implemented stabilized formulation therefore adopts a technique able to enforce the set of problem 

natural conditions (Hansbo, 1995). Such technique imposes the annihilation of the perturbation integral in the 

vicinity of the domain boundary and could be formulated as: 

δ b nsp
eΩ Ω∫ σ ij jd,

 
(6.31) 

where δb is an switch factor build as an array with a dimension equal to the number of nodes that store unit 

values if the nodes belong to the interior of the domain or zero values if the nodes belong to the domain 

boundary: 

δb (i) = 1 → ∀  i ∈  Γ 

δb (i) = 0 → ∀  i ∉  Γ 

 

 

6.2 The stabilization of diffusion dominated flow 

 

The methods that attempt to control the instability origin related to the flow incompressibility circumventing 

the Babuska-Brezzi condition, have as a common strategy the relaxing of free-divergence constraint on the 

velocity field. In such a way that the divergence of the velocity field is set equal to a small positive term, made 

proportional for instance to the pressure Laplacian (Brezzi and Pitkaranta, 1984): 

ui,i ∝ ( ), ,p i i
 

(6.32) 

Such a technique leads of course to a lose of consistency of the stabilized residual formulation with the original 

PDE boundary problem. 

 

With reference to the Stokes flow problem, that defines the diffusive limit of the more general Navier-Stokes 

formulation, it is possible to analyze residual formulations able to introduce a relaxation of the incompressibility 

constraint preserving the consistency.  

Let recall the differential form of the Stokes problem for incompressible flows in a domain Ω ⊂  Rnsd , where 

Γ is the domain boundary defined by piecewise continuous functions shared in two subsets Γg and Γh, such that: 

Γ Γ Γg h∪ =  (6.33) 

Γ Γg h∩ = ∅  (6.34) 

 

The incompressible Stokes problem could be formulated as: 

ij j i,σ + =f 0  

i i,u = 0  

 

(6.35) 

with the following boundary conditions: 

i i gu g= → Γ  

ij i i hσ n h= → Γ   
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The relative residual Galerkin formulation on the discretized domain is: 

e
s i ij s i

e
s ij i h i

e
c i i

e h e

d d d dΣ Σ Σ
Ω Γ Γ Ω

Ω Γ Γ Ω∫ + − ∫ − ∫ + ∫ =[ ] [ ], ,
int

w w f w n w h uσ σ w 0  
(6.36) 

where ws defines the Galerkin weight applied to the Stokes equations while the wc defines the weight applied to 

the continuity equation. 

 

The introduction of a perturbation of the weight ws, which is continuous into each elementary domain, leads 

to the definition of a consistent stabilized residual that gives rise to a relaxation of the incompressibility 

constraint. Let introduce a weight function with the following structure: 

s s e e c ih w′ = +w w α 2
,  (6.37) 

where αe defines a non-dimensional positive stability parameter and he is the element length scale (Hughes et 

al., 1986). 

 

The presence of such perturbed weighting functions transforms the original Galerkin residual formulation 

into a more general Petrov - Galerkin structure: 

e
s i ij s i

e
e e c i ij i i

e
s ij i h i

e
c i i

e e

h e

d h d

d d d

Σ Σ

Σ Σ
Ω Ω

Γ Γ Ω

Ω Ω

Γ Γ Ω

∫ + + ∫ + +

− ∫ − ∫ + ∫ =

[ ] [ ]

[ ]

, , ,

,
int

w w f f

w n w h u

σ σ

σ

α 2

0

w

w
 

 

(6.38) 

 

Let now consider the structure of Cauchy tensor σij: 

ij ij ij i j j ip kσ = − + +δ 2 ( ), ,u u  (6.39) 

The stabilizing term is linked to the spatial gradient of the pressure and assumes the following expression: 

Ω Ω
e e e c i ih w p d∫ α 2

, ,  
(6.40) 

 

Transforming the (6.40) by use of an integration by parts the integral becomes: 

Ω Ω ΓΩ Ω Γ
e e ee e c i i e e c i i e e c i ih w p d h w p d h w p d∫ = ∫ − ∫α α α2 2 2

, , , , ,( ) n  
(6.41) 

such expression de facto gives rise to the presence of an integral term proportional to the pressure Laplacian that 

due to the applied weight could be interpreted as a stabilization integral acting on the residual continuity 

equation. The above developments show clearly the role of the stabilization in altering the incompressibility 

constraint introducing a non-zero velocity field divergence. 

 

Residual stabilized formulation Pressure Stabilized - Petrov Galerkin (PS/PG) 

 

The Petrov-Galerkin method for the consistent stabilization of incompressible Stokes flow, could be exported 

in the more general framework of the Navier-Stokes flows as a technique to perturb the weight function applied 
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to the continuity equation. Such a stabilization method is called Pressure Stabilized - Petrov Galerkin PS/PG 

(Tezduyar, 1992). 

 

The PS/PG term applied to the Galerkin residual continuity equation is defined as (Hughes et al., 1986) 

(Tezduyar, 1992): 

e
pspg c i j ij j it w d

e

Σ
1

ρ
ρ

Ω
Ω∫ − −, ,[ ]u u fi, j σ  (6.42) 

where tpspg is a stability factor, in which all the relation with problem variable are cumulated. Such a factor in 

the code XENIOS assumes the following expression: 

)(Re
U2

h
t U

pspg γ=  

where: 

h, is a global length scale depending from the domain discretization; 

U, is the global scaling velocity; 

ReU, is a Reynolds number referred to h and U; 

γ(ReU) = coth(ReU)-1/ReU, is the law of dependence between the stabilization intensity and the flow regime. 

 

It is worth to note that in the discussed PSPG formulation the residuals of the momentum equations is used to 

build the stabilization integral. That is the relaxation of the incompressibility constraint is made proportional to 

the error affecting the velocity field solution. 

 

� 

The stabilization method here discussed has been originally developed to circumvent the Babuska - Brezzi 

stability condition and the need to use mixed finite element velocity-pressure spaces, thus allowing the use of 

equal-order interpolation spaces. Its implementation is recommendable also in presence stable pair of 

interpolation spaces (such the quadratic-velocity/linear-pressure) for the ensuing reasons: 

• in presence of stable mixed spaces the PSPG stabilized formulation preserves the convergence properties 

of the original Galerkin one (Hughes et al., 1986); 

• the PSPG stabilization allows the elimination of zero diagonal entries in the global coefficient matrix 

originally caused by the incompressibility constraint; 

• the PSPG stabilization permits the achievement of faster convergence history in case of adoption of 

iterative solver (Hughes et al., 1986). 
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