
CICLO A VAPORE CON RISURRISCALDAMENTO E 7 SPILLAMENTI

DATI

pressione di vaporizzazione	16,67	MPa
pressione di condensazione	43	kPa
temperatura di surriscaldamento	538	°C
temperatura di risurriscaldamento	538	$^{\circ}C$
pressione di risurriscaldamento	3,32	MPa
numero di spillamenti	7	

Le cadute di pressione nel generatore di vapore (GV) e nella circuiteria del vapore sono state calcolate come frazione della pressione di vaporizzazione. Le caratteristiche del fluido nei punti del ciclo noti sono determinabili mediante le tabelle termodinamiche dell'acqua. La tabella seguente riporta i valori di tali grandezze, si noti che le grandezze fornite come dati del problema sono indicate in grassetto.

stato	P [MPa]	T [K]	h [kJ/kg]	S[kJ/(kg K)]	Х
0	0,0043	303,6	134,6		0
1	16,670	303,6	134,6		liquido
2	16,670	623,9	1676,9		0
3	16,670	623,9	2538,9		1
4	16,670	811,16	3405,1	6,411	vap. surr.
5	3,320	≅ 563**	≅ 2960**	6,411	vap. surr
					_
6	3,320	811,16	3539,0	7,296	vap. surr.
7	0,9943	≅ 303**	≅ 2200**	7,296	≅ 0,86

legenda

In particolare, alcuni dei valori indicati nella precedente tabella sono stati desunti dalle tavole termodinamiche dell'acqua attraverso interpolazione.

Punto 4 P= 16,0 MPa

P=16,67 MPa P=18,0 MPa

T	h	S	H_{int}	S_{int}	h	S	T
520	3353,3	6,375			33788,0	6,296	520
538	3403,7	6,437	3405,1	6,411	3407,9	6,360	538
560	3465,4	6,513			3444,4	6,439	560

Punto 6 P=3,0 MPa

T	h	S	H_{int}	S_{int}	h	S	T
500	3456,5	7,234			3445,3	7,090	500
538	3542,1	7,341	3539,0	7,296	3532,3	7,200	538
540	3546,6	7,347			3536,9	7,206	540

^{*} si considera il punto 1 appartenente alla curva limite inferiore

 $^{^{\}star\star}$ i valori dell'entalpia di fine espansione iso-entropica sono desunti dal diagramma T,S

Scelta delle pressioni di spillamento

La scelta delle pressioni di spillamento andrebbe effettuata mantenendo, per quanto possibile, costanti i salti entalpici dell'acqua d'alimento tra una estrazione e la successiva.

Una prima indicazione si ricava quindi prendendo per l'acqua di alimento una variazione di entalpia Δh uguale per ogni riscaldamento rigenerativo:

$$\Delta h = \frac{h_2 - h_1}{z + 1}$$

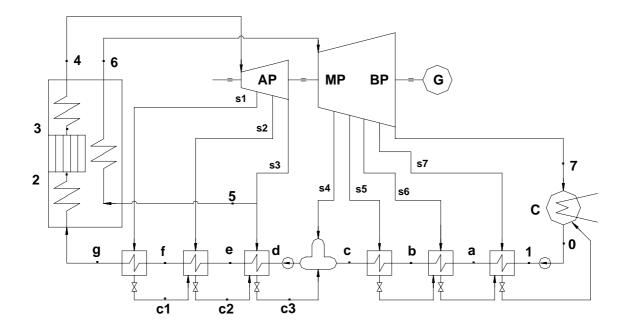
ovvero,

$$\Delta h = \frac{1676.9 - 134.6}{7 + 1} = 192.8 \text{kJ/kg}$$

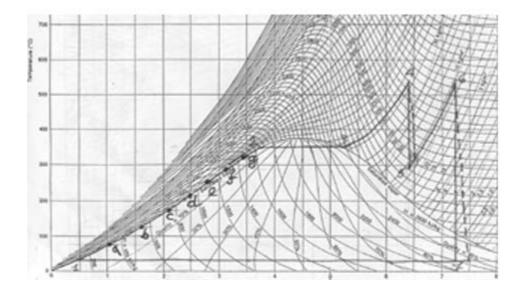
Nell'ipotesi di prescindere da criteri di ottimizzazione del posizionamento dei punti di prelievo lunga la linea di espansione (cfr. **Nota1**), si può pensare di effettuare i primi tre spillamenti in alta pressione (due intermedi ed uno in uscita) ed i rimanenti quattro in media e bassa pressione. Ad esempio secondo lo schema descritto nella pagina seguente, in cui sono indicati con lettere minuscole i punti significativi lungo la linea rigenerativa ed i corrispondenti stati dell'acqua d'alimento.

In tal caso si ha:

$$h_a = h_1 + \Delta h$$

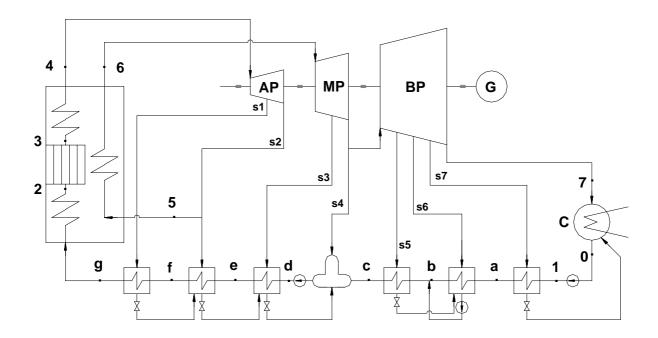

$$h_b = h_a + \Delta h$$

&c.

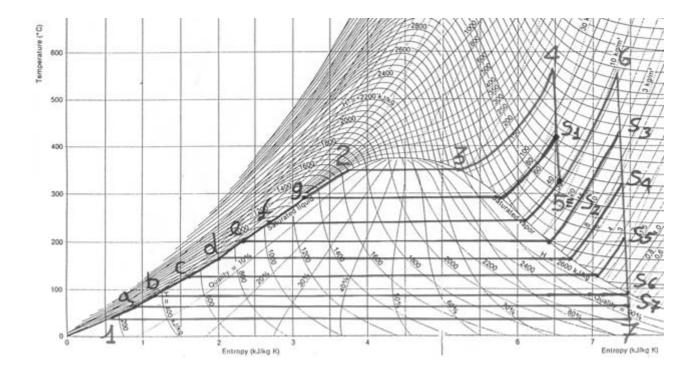

I valori di entalpia cosi trovati sono riportati nella tabella che segue, assieme ai corrispondenti valori della temperatura, prescindendo dai mescolamenti con condensa proveniente da altri rigeneratori.

	<i>0</i> ≅ <i>1</i>	а	b	С	d	e	f	g	2
h [kJ/kg]	134.6	327.4	520.2	713.0	905.8	1098.6	1291.4	1484.2	1676.9
t [°C	30.4	78.2	123.9	178.6	211.7	252.7	290.4	323.4	350.7
T [K]	303.6	351.4	397.1	451.7	484.9	525.9	563.6	596.6	623.9

Nota1: Si noti che in generale la scelta del posizionamento dei punti di prelievo del vapore non può prescindere dalla reale costituzione del corpo macchina. Ad esempio, per quanto riguarda il corpo di alta pressione della turbina a vapore, la presenza di stadi ad azione e la pressione di surriscaldamento assegnata, condizionano la scelta anche in relazione ai vincoli relativi alle differenze di temperatura all'*approach point* ed al *pinch point*.



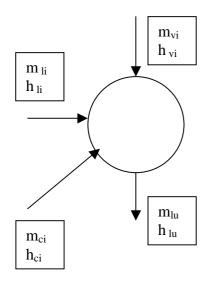
I punti corrispondenti sono rappresentati, inoltre, sul piano entropico.



Le estrazioni dalla turbina sono scelte in relazione ai salti entalpici dell'acqua di alimento lungo la linea rigenerativa. Come detto, in realtà viene effettuata, nel rispetto dei vincoli presenti nel progetto di insieme dell'impianto, una ottimizzazione degli spillamenti. Il condizionamento costituito dalla architettura della macchina, costituita da corpi di alta, media e bassa pressione, con in testa stadi ad azione che abbattono fortemente l'entalpia, e l'ottimizzazione conducono in generale a realizzare l'impianto secondo schemi differenti.

Uno schema aderente allo stato dell'arte nel disegno di linee rigenerative è il seguente.

In corrispondenza, si rappresentano le trasformazioni subite dalle quantità di vapore spillate.


Nel diagramma successivo sono, inoltre, riportati i flussi di massa e di entalpia calcolati per lo schema adottato. Le grandezze di stato significative calcolate nei punti caratteristici della linea rigenerativa assumono i valori riassunti nella tabella seguente:

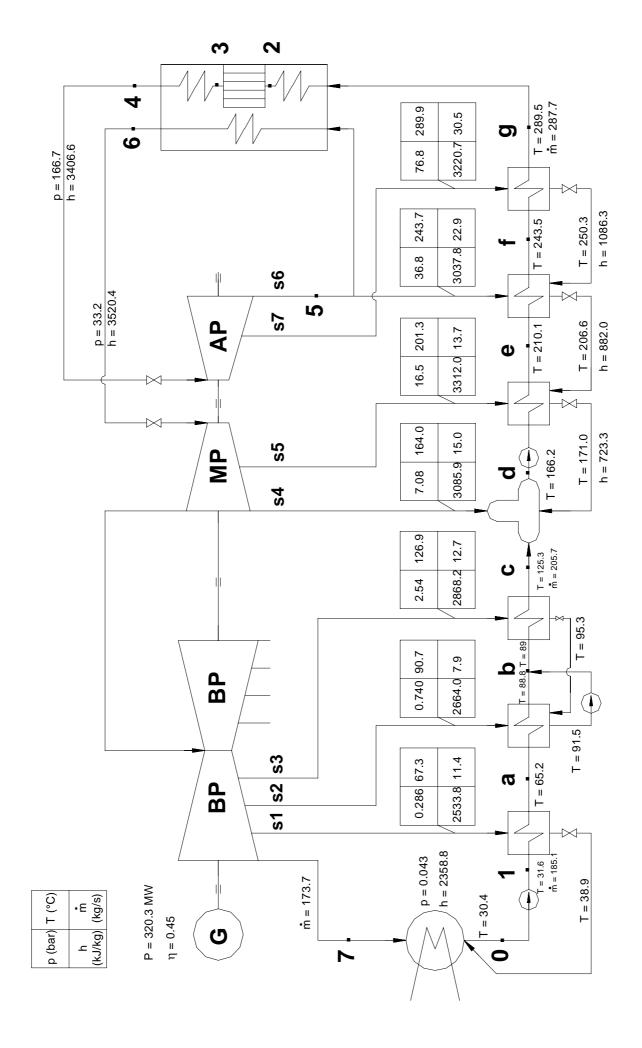
	<i>0</i> ≅ <i>1</i>	а	b	С	d	e	f	g	2
h [kJ/kg]	134.6	272.1	371,8	526.0	702.6	857.4	1054.1	1286.4	1676.9
t [°C]	30.4	65.2	88.8	125.3	166.2	201.1	243.5	289.5	350.7
T [K]	303.6	338.4	362.0	398.8	439.4	474.3	516.7	562.7	623.9
m [·]	185.1	185.1	185.1	205.7	287.7	287.7	287.7	287.7	287.7
			205.7						

Per ogni estrazione, vengono ora riassunte le grandezze relative al vapore spillato

	$p_{vapore}[Mpa]_{\square}$	m _{spillata} [kg/s]	$h_{vapore}[kJkg]$	$T_{saturazione}[^{\circ}C]$
1	0.0286	11.4	2533.8	67.3
2	0.074	7.9	2664.0	90.7
3	0.254	12.7	2868.2	127.1
4	0.708	15.0	3085.9	164.0
5	1.65	13.7	3312.0	201.3
6	3.68	22.9	3037.8	243.7
7	7.68	30.5	3220.7	289.9

Esempio di calcolo di un rigeneratore

 m_{vi} portata di vapore entrante h_{vi} entalpia del vapore entrante m_{li} portata di acqua di alimento entrante h_{li} entalpia dell'acqua di alimento entrante m_{ci} portata di condensa entrante h_{ci} entalpia della condensa entrante m_{lu} portata di acqua di alimento uscente h_{lu} entalpia dell'acqua di alimento uscente


Prendendo in considerazione il degasatore, si ha

 $-m_{lu}+m_{li}+m_{vi}+m_{ci}=0$

eq. di continuità

 $-m_{lu}h_{lu} + m_{li}h_{li} + m_{vi}h_{vi} + m_{ci}h_{ci} = 0$

eq. dell'energia

stabilita la pressione di estrazione e dati m_{li} e h_{li} , l'equazione di continuità e l'equazione dell'energia, assieme all'equazione costitutiva

$$h_{vi} = f(p_{vi})$$

consentono di calcolare m_{vi} e m_{lu} , essendo state desunte m_{ci} e h_{ci} dal diagramma dei flussi massici ed energetici; infatti è

$$m_{ci} = 13.7 + 22.9 + 30.5 = 67.1 \text{ kg/s}$$

$$h_{\rm ci} = 723.3 \, {\rm kJ/kg}$$

Si ottiene

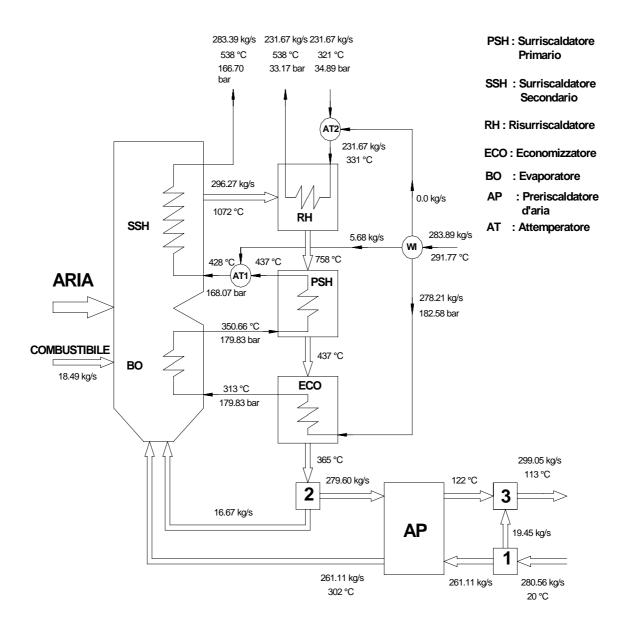
$$m_{vi} = \frac{\left(m_{li} + m_{ci}\right)h_{lu} - m_{li}h_{li} - m_{ci}h_{ci}}{h_{vi} - h_{lu}}$$

$$m_{vi} = [(205.7 + 67.1)702.62 - 205.7 \text{ x } 526.03 - 67.1 \text{ x } 723.3]/(3085.9 - 702.62) = 14.7 \text{ kg/s}$$

$$m_{lu} = 205.7 + 14.7 + 67.1 = 287.5$$

Calcolo della potenza limite

$$P_{l} = \sum_{i=1}^{z+1} m_{i} (h_{i} - h_{u})$$


il calcolo della potenza limite è riassunto nella seguente tabella

CALCOLO DELLA POTENZA

tronco di turbina	m	hi	hu	hi-hu	m(hi-hu)
1	287,7	3406,6	3220,7	185,9	53483,4
2	257,2	3220,7	3037,8	182,9	47041,9
3	234,3	3520,4	3312,0	208,4	48828,1
4	220,6	3312,0	3085,9	226,1	49877,7
5	205,6	3085,9	2868,2	217,7	44759,1
6	192,9	2868,2	2664,0	204,2	39390,2
7	185,0	2664,0	2533,8	130,2	24087,0
8	173,6	2533,8	2358,8	175,0	30380,0
			potenza	limite	337847,4

Generatore di vapore

si considera il seguente schema del generatore di vapore

In base ai flussi di massa ed energetici considerati per il ciclo e per il generatore, si può calcolare il rendimento del generatore stesso

$$\eta_g = \frac{m_{g-4}(h_4 - h_g) + m_{5-6}(h_6 - h_5)}{m_c \Gamma_i}$$

$$\eta_g = \frac{287.7(3406.6 - 1286.4) + 234.3(3520.4 - 3037.8)}{18.49 \times 41000} = 0.954$$

Calcolo della potenza

Detti P_l la potenza limite, η_o il rendimento organico della turbina e η_g il rendimento del generatore di vapore, si ha, considerando $\eta_o = 0.98$

$$P = \eta_o \eta_g P_l$$

$$P = 0.98 \times 0.954 \times 337847.4 = 315.86 \text{ MW}$$

Condensatore

la portata d'acqua condensatrice è

$$m_{acqua}$$
. = $m_{vapore}^{\cdot} \frac{\left(h_7 - h_0^{}\right)}{c_{p_{acqua}} \Delta t_{acqua}}$

assegnando $\Delta t_{acqua} = 15$ °C

$$m_{acqua} = \Delta t_{acqua} \frac{173.7(2358.8 - 134.6)}{4.186x15} = 6152.9 \text{ kg/s}$$