Modulo per analisi di convergenza

Griglia rada Δx^r

$$\Delta t^r$$
 $g_n^r =$

Griglia media Δx^m

$$\Delta t^m$$
 $g_n^m =$

Griglia fitta Δx^f

$$\Delta t^f$$
 $g_n^f =$

$$\tilde{n} = \frac{log\frac{g_n^r - g_n^m}{g_n^m - g_n^f}}{log2} = \dots$$

$$\tilde{k} = -\frac{g_n^r - g_n^m}{\Delta x^{\tilde{n}} - (\frac{\Delta x}{2})^{\tilde{n}}} = \dots$$

$$\tilde{g} = g_n^r + \tilde{k}(\Delta x)^{\tilde{n}} = \dots$$

$$\tilde{E}^r = |\tilde{g} - g_n^r| = \dots$$

$$\tilde{E}^m = |\tilde{g} - g_n^m| = \dots$$

$$\tilde{E}^f = |\tilde{q} - q_n^f| = \dots$$

Modulo per analisi di convergenza

Problema schema x t

Griglia rada
$$\Delta x^r = \dots$$

$$\Delta t^r = \dots \qquad g_n^r = \dots$$

Griglia media
$$\Delta x^m = \dots$$

$$\Delta t^m = \dots \qquad g_n^m = \dots$$

Griglia fitta
$$\Delta x^f =$$

$$\Delta t^f = \dots \qquad g_n^f = \dots$$

$$\tilde{n} = \frac{log \frac{g_n^r - g_n^m}{g_n^m - g_n^f}}{log 2} = \dots$$

$$\tilde{k} = -\frac{g_n^r - g_n^m}{\Delta x^{\tilde{n}} - (\frac{\Delta x}{2})^{\tilde{n}}} = \dots$$

$$\tilde{g} = g_n^r + \tilde{k}(\Delta x)^{\tilde{n}} = \dots$$

$$\tilde{E}^r = |\tilde{g} - g_n^r| = \dots$$

$$\tilde{E}^m = |\tilde{g} - g_n^m| = \dots$$

$$\tilde{E}^f = |\tilde{q} - g_n^f| = \dots$$