FMI Acoustics Presentation

AIRCRAFT ENGINE NOISE

ROME AERONAUTICAL ENGINEERING UNIVERSITY

May the 28th, 2004

loise Reduction Trends

verage Noise Reduction in Decibels per Operation

cfn

THE POW OF FLIG

Noise Footprint Example

AME AIRCRAFT: GENERATION 1 ENGINES vs NEW GENERATION ENGINES

- TO CEMI NOISE SITUATION
- **NOISE INSIDE A NEW ENGINE PROJECT**
- **NOISE CERTIFICATION**
- TODAY'S NOISE TECHNOLOGIES
- FOR A QUIET FUTURE
- **QUESTIONS**

oise Certification Scheme

TATION ENVIRONMENTAL PROTECTION **ICAO ANNEX 16** Vol.1 Chapter 3 (THIRD EDITION 1993)

INT AVIATION REQUIREMENTS: **JAR 36** (1997)

DERAL AVIATION REGULATIONS : **FAR 36** (1993)

SSIAN AVIATION REGISTRATION : $\mathbf{AP-36}$ (AVIATION REGULATION - 36)

PNL: the noise aeronautical unit

Measure Physical Unit : the décibel (dB) $dB = 10 \log_{10}$ (acoustic pressure / $20 \mu Pa$)

CAO Acoustic Certification- Stage 3 Limits

CAO Noise Rules Evolution

age 4 Noise Regulation

FOR A QUIET FUTURE

CFM International is a Joint Company of Snecma Moteurs, France and General Electric Co., U.S.A.

FMI Noise Situation

Snecma Moteurs has prime responsibilty for Noise Engineering on all CFM56 Programmes

156-5A & 5B

156-5C

FMI Noise Situation

Continued Effort To Reduce Noise

FMI Noise Situation

CFMI Proprietary Information - Unauthorized Disclosure, Use, or Export are Prohibited.

cfn

OF FLIG

trong Integration in Engine and Aircraft Development Processe

pecific Prediction Tools to support all Engine Programme Step

oise Sources & EPNL Calculation

urces

craft

ctors

sphere

ow Noise Engine Component Design

ptimisation of Noise Reduction Systems

xperimental Validation

Outdoor Engine Test Facility

xperimental Validation

nechoic wedges

ed microphones

Exhaust nozz

Wind Tunnel:

 $(\Phi = 2 \text{ m})$

xperimental Validation

FMI Noise Experience / Experimental Database

Jet noise model in wind tunnel

12 campaigns since 1985, more than 60 configurations

Engine static test

- more than 15 static engine acoustic certification
- more than 20 campaigns
- more than 120 configurations including acoustic liners

Flight test

- 9 engineering flight tests
- 6 certification flight tests

- TO CENTER STRUCTURE STRUCTURE TO SERVICE STRUCTURE S
- **NOISE INSIDE A NEW ENGINE PROJECT**
- **NOISE CERTIFICATION**
- TODAY'S NOISE TECHNOLOGIES
- FOR A QUIET FUTURE
- **QUESTIONS**

loise Certification

cfn

oise Family Plan Concept

loise Certification

cfn

THE POV

OF FLIG

loise Certification

3737NG / CFM56 7B Example

2 CERTIFICATION STATIC TEST + 1 CERTIFICATION FLIGHT TEST = SEVERAL AIRCRAFT / ENGINE NOISE CERTIFICATION

FOR A QUIET FUTURE

urrent CFMI Engines Typical Noise Signature

urrent Noise Reduction Technologies

nprovement of Current CFM56 Engines

Fan Noise Reduction through 3D OGV Aeracoustic Design

Jet Noise Reduction through Chevron Nozzle Design

acelle Noise Reduction Systems

Extension of Attenuation Bandwidth towards Low Frequency Range

Improvement of Liner Efficiency through 3D Impedance Optimisation

cfn

acelle Noise Reduction Systems

Finite Element Duct Progation Model to support Negatively Scarfed Inlet Design

uture Engine Applications

Full Implementation of CAA capabilities achieve Low Broadband Noise Fan Design

Active Technologies applied to Low Frequency Fan Tones Reduction

ow Noise Aircraft Design- Engine installation

- Optimisation of future aircraft designs should consider powerplant installation factors as an opportunity for further noise reduction
- Significant development of aerocoustics modelling and appropriate testing facilities will support such activities

OF FLIG

chnologies Panel to support Optimum Aircraft System Definiti

Tools urce anding Advanced CFD Models

Source Models

Propagation Models

achinery ise ction ology

Noise Reduction at Source

Noise Reduction Systems

aust ise ction ology

Nozzle Design & Liner Technology

e noise ction iques

High Lift Devices & Landing Gear

- TO CENTRAL CONTROL OF THE CONTROL OF
- **NOISE INSIDE A NEW ENGINE PROJECT**
- **NOISE CERTIFICATION**
- TODAY'S NOISE TECHNOLOGIES
- FOR A QUIET FUTURE
- **QUESTIONS**

or a Quiet Future

pcoming Challenges

Goal to introduce in service by 2010 products allowing traffic growth at no environmental cost (Ex : 10 dB cumulative margin re Chapter 4 for a typical Tons MTOW Twin Engine Aircraft) :

- ⇒ Development of appropriate panel of noise reduction technologies to support individual optimisation of aircraft system components:
 - Engine
 - Nacelle
 - Landing Gear
 - High Lift Devices
- ⇒ Combined optimisation of powerplant and aircraft taking into consideration installation factors and flight performance

or a Quiet Future

uropean Aircraft Noise Research Initiative

cfn

THE PON

OF FLIG

SILENCE(R) Technology Platform

ct Coordinator : Snecma Moteurs

<u>Innovations</u>:

Evaluation of Advanced Engine Concepts

tion of Novel Noise Reduction Solutions:

Low Noise Engine Component Design

Nacelle and Nozzle Liner Concepts

Active Noise Control Applications

Inlet and Nozzle Advanced Design

ation of Solutions to Helicopter Engine

tions of Ainforms Noise Deduction Color

tions of Airframe Noise Reduction Solutions;

anding Gear

High Lift Devices

ct Duration: 4 years (Start 04/01)

Budget: 112 MEuros (50% EC Support)

ipation: 51 partners from 14 EU countries

+ 2 Associated States.

uestions?

